

oral vaccination of freeroaming dogs against rabies

Ad Vos

OIE Webinar, World Rabies Day 2020

Elimination of dog-mediated human rabies

"Unlike for many other zoonoses, the appropriate tools to eliminate dogmediated human rabies already exists".

"Dog-mediated human rabies can be eliminated at its' source by vaccinating dogs ..."

Mass dog vaccination is the single most cost-effective method to achieve this goal

Parenteral Mass Dog Vaccination: Cornerstone of dog rabies control

central point or door-to-door vaccination

PLOS TROPICAL DISEASES

OPEN CACCESS Freely available online

The Feasibility of Canine Rabies Elimination in Africa: **Dispelling Doubts with Data**

Tiziana Lembo^{1,2,}, Katie Hampson³, Magai T. Kaare⁴, Eblate Ernest⁴, Darryn Knobel¹, Rudovick R. Kazwala⁵, Daniel T. Haydon¹, Sarah Cleaveland¹

1 Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom, 2 Davee Center for Epidemiology and Endocrinology, Uncoln Park Zpo, Chicago, Illingis, United States of America, 3 Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, United Kingdom, 4 Serengeti Carnivore Viral Transmission Dynamics Project, Tanzania Wildlife Research Institute, Arusha, Tanzania, 5 Sokoine University of Agriculture. Department of Veterinary Medicine and Public Health, Morogoro, Tanzania

PLOS NEGLECTED

RESEARCH ARTICLE

Review on Dog Rabies Vaccination Coverage in Africa: A Question of Dog Accessibility or Cost Recovery?

Tariku Jibat^{1,2+}, Henk Hogeveen¹, Monique C. M. Mourits

1 Business Economics Group, Wageningen University, Wageningen, The Netherlands, 2 College of /sterinary Medicine and Agriculture, Addia Ababa University, Debro Zeilt, Ethiopia

* tatku beyone @wur ni, @ontariku@gmeil.com

Achieving a high vaccination coverage is the most important aim of any vaccination campaign

Dog rabies: Parenteral Mass Dog Vaccination

Restriction:

The tools 'vaccine' and 'syringe' are there **but how to reach the free-roaming dog with parenteral vaccines?**

"Free-roaming dogs: Key in transmission of rabies" (Prof Dr Be-Nazir Ahmed, Rabies Global Conference)

Dog rabies: Parenteral Mass Dog Vaccination

How to reach the free-roaming dog with parenteral vaccines? Some dogs can be captured & become accessible to parenteral vaccination, but ...

Disadvantages Capture-Vaccinate-Release (CVR):

- cost and labour intensive
- animal welfare issues
- less effective with time (increased wariness of dogs reduces catching efficiency)

Question: is there an alternative method reaching these 'inaccessible' dogs?

Oral vaccination against rabies

Oral vaccination against rabies

Oral vaccination of foxes against rabies

Oral vaccination of wildlife and free-roaming dogs against rabies

If it works for her, ...

why would it not work for him? ...

... it does!

Oral vaccination of wildlife and free-roaming dogs against rabies

The three pillars:

Oral vaccination of dogs against rabies

Safety first:

- all oral rabies vaccines are based on live replication-competent viruses
- dogs and humans share the same environment

Annex 10. Currently available oral rabies vaccine products

Vaccine strain	Product name or brand name	Formula- tion	Vial size	Company	Country
SPBN- GASGAS	IDT Biologika	RABV	3rd	Reverse genetics with site-directed mutagenesis	Licensed for wildlife
ERA G333	Prokov	RABV	3rd	Reverse genetics with site-directed mutagenesis	Licensed for wildlife
SAG2*	Virbac	RABV	2nd	Monoclonal selection mutant	Licensed for wildlife
SAD B19	IDT Biologika	RABV	1st	Serial (passaged in vivo/in vitro)	Licensed for wildlife
SAD Bern	Bioveta	RABV	1st	Serial (passaged in vivo/ in vitro)	Licensed for wildlife
RB-97	FGBI "ARRAIH"	RABV	1st	Serial (passaged in vivo/ in vitro)	Licensed for wildlife
VRC-RZ2	No information	RABV	1st	Serial (passaged in vivo/ in vitro)	No information
KMIEV-94	No information	RABV	1st	Serial (passaged in vivo/ in vitro)	No information
V-RG*	Merial	Vaccinia virus		Recombinant, expressing rabies glycoprotein	Licensed for wildlife
AdRG1.3	Artemis Technologies	Adenovirus		Recombinant, expressing rabies glycoprotein	Licensed for wildlife

... Countries that are considering use of ORV of dogs should ensure the **safety** of the viral construct on the target and nontarget species

Oral rabies vaccines for wildlife and free-roaming dogs: safety

 $\mathsf{CHAPTER}\ 2.1.17.$

RABIES (INFECTION WITH RABIES VIRUS AND OTHER LYSSAVIRUSES)

Updated May 2018

Minimum safety requirements

- Target species
 - overdose (incl. shedding)
 - reversion-to-virulence
- Non-target species
 - dogs
 - cats
 - rodents
 - immunocompromised hosts (SCID and/or nude mice)
 - humans (risk assessment human safety and likelihood human contacts with vaccine virus)

Oral Vaccination of Dogs against Rabies: distribution system

Hand-out & retrieve model

Target population: free-roaming and restricted dogs not accessible for parenteral vaccination

- baits not accepted and discarded vaccine blisters can be recollected by vaccinators
- distribution system with only limited risk of human contact with vaccine virus
- no or limited wastage of vaccine baits
- easily intergrated in mass parenteral vaccination campaign

Oral Vaccination of Dogs against Rabies: Field studies

Field study: Turkey – Istanbul

	Total coverage inc oral	83.8	74.1	
	Oral campaign	21.2	18.1	
	Sub-total coverage without ORV of do	ogs 62.6	56.0	
	Door-to-door	22.8	40.5	
	Campaign at clinic (central point)	21.8	-	
	Prior to campaign	18.0	15.5	
	Vaccination coverage (%)	Sarigazi district	Ferhatpasa district	

- Repeated studies show that traditional vaccination programmes do not meet the required coverage levels for herd immunity.
- The solution: an effective oral rabies vaccination programme in addition to the traditional methods can help reach the 70% coverage required

Field study: Philippines

74%

Ownerless dogs

Field study: Haiti

Hand-out & retrieve model:

- 97% of dogs offered a bait accepted it
- 93% of dogs offered a bait punctured the sachet filled with vaccine
- 95% of sachets were swallowed by dogs or recovered by vaccinators
- 78% of dogs had evidence of rabies antibodies after bait acceptance (ELISA)
- No adverse events in dogs and humans reported

Evaluation of immune responses in dogs to oral rabies vaccine under field conditions

Todd G. Smith^{a,1,*}, Max Millien^{b,1}, Ad Vos^c, Franso A. Fracciterne^d, Kelly Crowdis^e, Cornelius Chirodea^e, Alexandra Medley^a, Richard Chipman^f, Yunlong Qin^{a,2}, Jesse Blanton^{a,2}, Ryan Wallace^{a,2}

Field study: Haiti

Rabies Vaccination Coverage by Method

Adding ORV was not only more effective in terms of vaccination coverage but D2D+ORV was also more cost-effective:

"Despite the relative high cost of an ORV bait combining D2D and ORV was the most costeffective strategy; largely due to increased efficiency to target less accessible dogs"

Costs and effectiveness of alternative dog vaccination strategies to improve dog population coverage in rural and urban settings during a rabies outbreak

Eduardo A. Undurraga^{a,*}, Max F. Millien^b, Kasim Allel^a, Melissa D. Etheart^c, Julie Cleaton^d, Yasmeen Ross^d, Vaccine Evaluation TeamKelly Crowdis^c, Alexandra Medley^d, Ad Vos^f, Emmanuel Maciel^d, Benjamin Monroe^d, Amber Dismer^c, Jesse D. Blanton^d, Cuc H. Tran^d, Richard Chipman^h, Pierre Dilius^b, Fleurinord Ludder^b

Field studies – India (Goa State)

Cost-effectiveness analysis ORV vs. CVR

	CVR	ORV
dogs vacc./team/day	63	69
dogs vacc./person/day	9	35
dogs vacc./team/hr	10.43	11.48
dogs vacc./person/hr	1.5	5.7
sighted dogs vacc.	63%	80%
inaccessible dogs vacc.	46%	69%
dogs vacc. /km²	75	85
costs/dog vacc. (U\$)	2.53	2.29

ORV-team: team leader, vaccinator + scooter CVR-team: team leader, vaccinator, 4 catchers, 1 driver + truck

Oral bait handout as a method to access roaming dogs for rabies vaccination in Goa, India: A proof of principle study

A.D. Gibson^{a,b}, G. Yale^c, A. Vos^d, J. Corfmat^c, I. Airikkala-Otter^e, A. King^f, R.M. Wallace^g, L. Gamble^a, I.G. Handel^b, R.J. Mellanby^h, B.M. de C. Bronsvoort^{b,*}, S. Mazeri^{b,*}

Oral Vaccination of Dogs against Rabies: Summary

- Oral vaccination offers a possibility to reach dogs inaccessible for parenteral vaccination
- Oral vaccination increases efficiency of campaigns by reducing time (and therefore money) required to capture and restrain dogs
- Oral vaccination reduces capture stress for both dogs and humans
- Oral vaccination as a complementary tool to parenteral vaccination can increase herd immunity to levels required to interrupt the transmission cycle

Thank You

