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Abstract 38 

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by the RVF virus 39 

(RVFV) that can infect domestic and wild animals. Although the RVFV transmission cycle has 40 

been well documented across Africa in savanna ecosystems, little is known about its 41 

transmission in tropical rainforest settings, particularly in Central Africa. We therefore 42 

conducted a survey in northeastern Gabon to assess RVFV circulation among wild and domestic 43 

animals. Among 163 wildlife samples tested using RVFV-specific RT-qPCR, four ruminants 44 

belonging to subfamily Cephalophinae were detected positive. The phylogenetic analysis 45 

revealed that the four RVFV sequences clustered together with a virus isolated in Namibia 46 

within the well-structured Egyptian clade. A cross-sectional survey conducted on sheep, goats 47 

and dogs living in villages within the same area determined the IgG RVFV-specific antibody 48 

prevalence using cELISA. Out of the 306 small ruminants tested (214 goats, 92 sheep), an 49 

overall antibody prevalence of 15.4% (95% CI [11.5–19.9]) was observed with a higher rate in 50 

goats than in sheep (20.1% versus 3.3%). RVFV-specific antibodies were detected in a single 51 

dog out 26 tested. Neither age, sex of domestic animals nor season was found to be significant 52 

risk factors of RVFV occurrence. Our findings highlight sylvatic circulation of RVFV for the 53 

first time in Gabon. These results stress the need to develop adequate surveillance plan 54 

measures to better control the public health threat of RVFV. 55 

 56 
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Author summary  61 

Rift Valley fever (RVF) is a mosquito-borne viral zoonosis caused by the RVF virus 62 

(RVFV) that can affect wild and domestic animals. Although the RVFV transmission cycle has 63 

been well documented across Africa in savanna ecosystems, little is known about its 64 

transmission in tropical rainforests, especially in Central Africa. We thus conducted a survey 65 

in northeastern Gabon to assess RVFV circulation among wild and domestic animals. In this 66 

study, we demonstrated for the first time in Gabon the presence of the RVFV in two wildlife 67 

species (Peter’s duiker Cephalophus callipygus and the blue duiker Philantomba monticola). 68 

In addition, we detected RVFV-specific antibodies in small domestic ruminants (sheep and 69 

goats) with an overall antibody prevalence of 15.4%, with a much higher seroprevalence rate 70 

in goats than sheep (20.1% versus 3.3%). Furthermore, RVFV-specific antibodies were also 71 

observed in a single (hunting) dog out of the 26 tested. These results stress the need to develop 72 

adequate surveillance plan measures to better control the public health threat of RVFV. 73 

 74 
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Introduction 76 

Among 175 human pathogenic species considered to be associated with emerging 77 

infectious diseases (EIDs), 75% are zoonotic — with many emerging over the past two decades 78 

in  wildlife source [1]— making zoonotic EIDs a growing major threat to global health.  79 

Although the emergence and re-emergence of diseases caused by arboviruses (viruses 80 

transmitted by arthropod vectors) is a constant concern in many African countries, their 81 

prevalence remains poorly documented due to the lack of efficient surveillance systems [2]. In 82 

addition, a significant number of vector-borne viruses are zoonotic, and there are gaps in the 83 

understanding of their ecology in natural wildlife niches and the factors that lead to their 84 

transmission to humans. 85 

In Gabon, a total of 51 endemic or potentially endemic infectious viral diseases have 86 

been reported. Among them, 22 are of zoonotic origin and involve 12 families of viruses [3,4]  87 

with the most notorious arboviruses being Ebola, Marburg, and chikungunya, dengue, Rift 88 

Valley fever (RVF), yellow fever, West Nile fever and Zika. RVF is a World Organization for 89 

Animal Health (WOAH)-listed disease and a World Health Organization (WHO) priority 90 

disease for research and development due to its potential to cause major epidemics in humans 91 

[5]. RVF is a mosquito-borne, infectious disease caused by a negative single-stranded RNA 92 

virus named RVF virus (RVFV), a member of the Phlebovirus genus (family Phenuiviridae). 93 

In humans, RVFV infection is mostly pauci-symptomatic, but the illness can progress to 94 

hemorrhagic fever syndrome in few  cases [6]. In animals, abortions and stillbirths in ruminants 95 

- domestic (cattle, sheep, goats and camels) or wild (buffaloes, antelopes, wildebeest) - resulting 96 

in major livestock deaths involving considerable economic losses in Africa, the Arabian 97 

Peninsula and the southwestern Indian Ocean region [7,8]. Epizootics (i.e. disease outbreaks 98 

that affect animals) of RVF are sporadic and often linked to persistent and heavy rainfall and 99 

flooding, which are in turn correlated with an abundance of mosquitoes of the Aedes, Culex and 100 
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Anopheles genera, which are known to be involved in RVFV transmission [9,10]. Humans 101 

usually contract RVF through direct contact via aerosols of body fluid secretions of infected 102 

livestock and, to a lesser extent, may develop the disease through mosquito bites of infected 103 

mosquitoes [11].  104 

Following the first description of RVFV in 1930 in Kenya [12], epizootics were 105 

recorded in East and South Africa until 1977; evidence from serological surveys (Angola, 1960; 106 

Cameroon, 1968; Chad, 1969) and virus isolations (Democratic Republic of Congo (DRC), 107 

1936–1954; Central African Republic (CAR), 1969) have revealed contemporaneous 108 

circulation of RVFV in central Africa. Thereafter, the disease began to spread north to Sudan 109 

and Egypt, leading to the first massive epizootic/epidemic in Egypt in 1977–78, which affected 110 

200,000 people and led to at least 600 deaths [13]. The disease was later recorded in Madagascar 111 

in 1979 and then West Africa (Senegal and Mauritania) in 1987 [14]. The epidemic potential 112 

and human health impact of this disease have been acutely felt on the African continent. RVF 113 

is enzootic/endemic in East and South Africa causing epizootics/epidemics in Egypt (2003), 114 

Kenya (2018), Somalia, Sudan, Madagascar (2008–2009, 2019–2021), South Africa (2009–115 

2011), Uganda (2016, 2023) [15] and various parts of West Africa, with inter-epizootic RVFV 116 

circulation. In 2000–2001, the virus left the African continent for the first time, reaching the 117 

Arabian Peninsula (Saudi Arabia, Yemen).  118 

In Central Africa, at the crossroads of major African geographical regions experiencing 119 

RVF epizootics/epidemics, several studies have demonstrated the circulation of the virus in 120 

domestic ungulates as well as in humans in a savanna-type ecosystem in Cameroon, Gabon, 121 

Equatorial Guinea and the DRC [16–25], but no major epidemics or epizootics have been 122 

reported there, in contrast to East and South Africa, West Africa and Egypt. Nevertheless, little 123 

is known about RVFV in the tropical forests of Central Africa, with only a few serological 124 

surveys suggesting RVFV circulation. These surveys revealed the presence of RVF antibodies 125 
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in antelopes, wild buffaloes, warthogs and elephants in CAR [26] and in the rural human 126 

population in Gabon [27]. Moreover, in southern Cameroon, the sylvatic circulation of RVFV 127 

was suggested to explain the presence of antibodies in locally bred goats [28]. Nonetheless, he 128 

sylvatic cycle of RVFV remains poorly documented in Central African rainforests. Several 129 

wildlife vertebrate hosts, particularly wild ungulates, are possibly involved in RVFV circulation 130 

involving forest mosquito species (belonging to genera Aedes, Anopheles and Culex) that are 131 

involved in, or are closely related to, domestic cycles. To date, little is known about RVFV 132 

sylvatic vectors in the forests of Central Africa, and the virus has only been isolated once in 133 

Aedes mosquitoes belonging to the Neomelaniconion subgenus and the palpalis species group 134 

collected in the CAR [29]. Moreover, isolation of RVFV from humans [30] together with 135 

serological RVFV evidence from Pygmy populations [31] suggest the existence of an RVFV 136 

forest cycle in the CAR and probably throughout Central Africa.  137 

The study conducted here in Gabon was therefore intended to extend our knowledge of 138 

the sylvatic circulation of the RVFV in rainforests of Central Africa by investigating wildlife 139 

and domestic animals at the edge of rainforest. We demonstrated for the first time in Gabon the 140 

presence of the RVFV in two wildlife species (Peter’s duiker Cephalophus callipygus and blue 141 

duiker Philantomba monticola), along with RVFV-specific antibodies in livestock small 142 

ruminants and dogs. 143 

 144 

Materials and Methods 145 

Study area 146 

The study was carried out in 19 villages located in the Zadié Department, located in the Ogooué-147 

Ivindo province, northeastern Gabon. This area is mainly composed of primary tropical 148 

rainforests along three main routes radiating from Mekambo, the main city in Zadié: Mekambo-149 

Mazingo (Route #1), Mekambo-Ekata (Route #2) and Mekambo-Malouma (Route #3) (Fig 1). 150 
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 151 

Sampling and data collection 152 

Wild animals were sampled along the three routes described above (Fig 1) in July 2019 during 153 

the dry season and legal hunting season. Organ samples (liver and spleen) were collected from 154 

animals hunted in the surrounding forest and displayed roadside and sold for consumption 155 

(Table 1). Samples were temporarily stored in liquid nitrogen at the Mekambo health center, 156 

before being transferred to CIRMF (Centre Interdisciplinaire de Recherches Médicales de 157 

Franceville) laboratory for storage at -80°C.  158 

 159 

Fig 1. Map of the study area, Zadié Department, Gabon.  160 

 161 

Gray dots indicate the sampled villages and red dots, the villages where hunters brought back 162 

Cephalophinae detected positive for RVFV. 163 

 164 

 165 
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Table 1. List of wild animal species screened for the RVFV genome  170 

Wild animal species   n 

Atherurus sp. 25 

Cephalophus agilbigi 1 

Cephalophus callipygus 4 

Cephalophus dorsalis 13 

Philantomba monticola 92 

Cephalophus sp. 22 

Cercopithecus cephus 1 

Genetta abyssinicka 2 

Genetta sp. 2 

Potamochoerus porcus 1 

Total 163 

 171 

Additionally, livestock (goats and sheep) and dogs were sampled at two time points, 172 

once in November 2018 (short rainy season) and once in July 2019 (long dry season), along 173 

Route #1 and Route #2 (Fig 1). There is no census of livestock in this region. Domestic animals 174 

were selected based on the willingness of the livestock owners to cooperate with the study. 175 

Thus, the number of sheep and goats sampled depended on the livestock owner’s availability 176 

and their ability to restrain their animals for sampling. Data on species, sex, period of sampling 177 

and age (or sexual maturity stage) were collected using a standard questionnaire submitted to 178 

each animal owner. Sheep and goats were classified as young or adult according to the criterion 179 

of sexual maturity: young (under 3 years old) and adult (aged >3 years) using both 180 

morphological characters observed by the veterinarians and information provided by animal 181 

owners. For each domestic animal, a blood sample was collected in EDTA tubes upon jugular 182 

venipuncture and preserved in a cooler box until transport to the laboratory. 183 

 184 

RVFV genome detection in wildlife  185 
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A total of 163 wild animals (comprising mostly Cephalophus spp. ruminants and 186 

Atherurus spp. rodents) were sampled (Table 1) and tested for the presence of RVFV genome 187 

using a RT-qPCR method. Briefly, after grinding up the organs (liver and spleen) in RA1 lysis 188 

buffer supplemented with a 1% Triton X-100 solution (Sigma, France), RNA was extracted 189 

using the Nucleospin RNA kit (Macherey-Nagel, Germany) followed by a RVFV-specific RT-190 

qPCR amplification [32] in a Lightcycler L96 (Roche) equipment. When RVFV was detected 191 

in wildlife samples, DNA was extracted using the Qiagen DNeasy Blood & Tissue Kit (Qiagen, 192 

Courtaboeuf, France) in order to to amplify a 710 bp long fragment of the mitochondrial 193 

cytochrome oxidase I (COX1) gene using PCR to identify/confirm the vertebrate species [33]. 194 

COX1 sequences generated were then aligned and compared with Cephalophinae sequences 195 

from central Africa. 196 

 197 

Sequencing and phylogenetic analysis of RVFV 198 

All positive samples after the full-length RVFV S segment PCR amplification following 199 

the protocol defined in [34] were sequenced. The phylogenetic analyses were done after 200 

multiple alignments of the obtained sequences, along with GenBank reference sequences using 201 

ClustalW (v1.8.1 in BioEdit v.7.0.9.0. software). Indeed, before phylogenetic analysis, datasets 202 

and multiple sequence alignments were thoroughly checked to eliminate misalignments and 203 

ensure the correct framing of the coding sequences. Maximum likelihood (ML) methods were 204 

used for tree construction using full-length sequences of the S segment (1690 nucleotides). 205 

Sequence evolution was modeled using the general time reversible (GTR) + Gamma model, as 206 

determined using Model Test [35]. The best-fitting ML model according to Akaike’s 207 

information criterion was the general time-reversible + γ distribution for nucleotides, as 208 

identified by Model Test [35]. The ML trees and corresponding bootstrap support values were 209 

obtained using the online software PhyML, based on nearest neighbor exchange and subtree 210 
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pruning, regrafting, branch swapping and 100 bootstrap replicates [36] (available at the ATGC 211 

bioinformatics facility: http://www.atgc-montpellier.fr/).  212 

 213 

Anti-RVFV antibody detection in domestic ruminants and dogs 214 

Unfortunately, anti-RVFV antibody detection could not be carried out in wildlife 215 

because blood samples were not available. In domestic animals, RVFV-specific IgM and IgG 216 

antibodies were detected using ELISA with respectively the ID Screen® Rift Valley fever IgM 217 

Capture and ID Screen® Rift Valley fever competition multispecies kits (Innovative 218 

Diagnostics, Grabels, France) according to the manufacturer’s instructions. Diagnostic 219 

sensitivity of the IgG kit is 98% and specificity 100% [37]. 220 

Because the circulation of phleboviruses other than RVFV cannot be excluded in Gabon, a 221 

subset of randomly selected positive and negative samples was tested using the virus 222 

neutralization test (VNT), considered as the gold standard method by WOAH [38]. Briefly, 223 

duplicates of two-fold serial dilutions of sera starting from 1:5 were added to 100 TCID50 (50% 224 

tissue culture infectious dose) of Smithburn RVFV in 96-well microtiter plates and incubated 225 

for 1 h at 37°C. Next, 100,000 Vero cells were added to each well and the plates were incubated 226 

under 5% CO2 for 5–6 days at 37°C. Titers were expressed as the inverse highest dilutions 227 

giving 50% of cytopathic effect. A positive control serum was included. A serum sample with 228 

a titer of 1:10 or higher was considered seropositive. 229 

 230 

Statistical analysis 231 

We analyzed small ruminant serological data from ELISA using GLM (generalized 232 

linear models), with the individual serological status as the response, and potential risk factors 233 

(species, age, gender, period of sampling) as explanatory variables. Multicollinearity among 234 

explanatory variables was assessed using variance inflation factors (VIFs). The selection of the 235 
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best models was based on the Akaike information criterion (AIC). A multi-model inference 236 

approach was used for the set of models with an AIC within 2 units difference of the best model 237 

[39]. Data analyses were performed using R software version 4.3.0 [40].  238 

 239 

Results 240 

RVFV genome detection and genetic diversity 241 

Of the 163 wildlife animals sampled along three main routes in northeastern Gabon, the 242 

RVFV-specific genome was detected in four of them (two duiker species: one sample from 243 

Cephalophus callipygus and three from Philantomba monticola (Table 2, Fig 1). After 244 

sequencing the entire S segment, phylogenetic analyses were carried out to explore their genetic 245 

relatedness with all previously published RVFV S segment nucleotide sequences. All four 246 

sequences detected in duikers clustered with a human strain of RVFV isolated in Namibia in 247 

2004, with nucleotide identity between our sequences and the Namibian sequence ranging from 248 

99.0 to 99.8%. This cluster is closely related to the Egyptian cluster (i.e. cluster A following 249 

the Grobbelaar classification [41] that also includes one strain from Zimbabwe 1978 and one 250 

strain from Madagascar 1979) (Fig 2). Viral isolation was attempted on Vero cells without 251 

success. 252 

 253 

 254 

 255 

 256 

 257 

 258 

 259 
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Table 2. RVFV genome detection in wildlife using RT-qPCR according to sampled route 260 

and village 261 

Route Village 

Number of positive 

samples/Total number 

of samples 

Route #1 

Etakangaye - 

Imbong - 

Zoula 1/201 

Ibea - 

Grand Etoumbi 2/531,2 

Ego Pouma 1/111 

Massombo - 

Mazingo - 

Route #2 

Matoa 0/2 

Mbeza - 

Malassa 0/5 

Mekouma 0/11 

Ntolo 0/3 

Mendemba - 

Ilahounéné - 

Ekata 0/13 

Route #3 

Komenbela 0/23 

Etchela-

Edounga 0/19 

Malouma 0/3 

  Total 4/163 

   
1Philantomba monticola  
2Cephalophus callipygus  

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 
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Fig 2. Phylogenetic tree derived from nucleotide sequence data of the entire S segment. 274 

 275 

 276 
 277 

 The phylogenetic analyses were carried out after multiple alignments of the obtained sequences 278 

along with the GenBank reference sequences (including all published sequences). Maximum 279 

likelihood (ML) methods were used to construct trees based on full sequences of the S segment 280 

(1690 nt). The GenBank accession numbers for the S gene are OR528950, OR528951, 281 

OR528952, OR528953 for samples 7, 108, 120 and 166, respectively. 282 

 283 

 284 
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RVFV specific antibody prevalence  285 

Following the detection of RVFV in wild duikers, a cross-sectional serological study 286 

was conducted in populations of small domestic ruminants and dogs living in villages where 287 

hunted animals were sampled. Overall, a total of 306 small ruminants (214 goats and 92 sheep) 288 

and 26 dogs (including 3 hunting dogs) were sampled and screened for RVFV specific 289 

antibodies (IgM and IgG) using ELISA. RVFV-specific IgM was not detected in any of the 290 

samples. RVFV-specific IgG antibody prevalence in livestock was 15.4% (47/306; 95% CI 291 

[11.5–19.9]) (Table 3). VNT was used to confirm samples detected highly positive by cELISA 292 

(optical density (OD) < 0.3) with 15 samples confirmed positive by VNT out of 19 tested. 293 

RVFV-specific antibodies were found in goats along both routes with similar prevalence rates 294 

(Route #1: 24.5% (23/94); Route #2: 17.5% (21/120)). Unlike goats with a seroprevalence of 295 

20.6% (95% CI [15.4–26.6]), RVFV-specific antibodies were detected only in three sheep with 296 

a seroprevalence of 3.3% (95% CI [0.7–9.2]): Route #1: 2.6% (2/76); Route #2: 6.2% (1/16). 297 

Finally, RVFV-specific antibodies were detected in only one dog (3.8% (1/26), 95% CI [0.0–298 

19.6]), which was a hunting dog (Table 3).  299 

 300 
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301 

Table 3. RVFV-specific IgG antibodies detection in livestock (sheep and goats) and dogs using ELISA according to sampled route and village. 302 

303 

Route Village 

Goats Sheep Dogs 

Positive 

samples/total 

Age Positive 

samples/total 

Age Positive 

samples/total Young Adult Young Adult 

Route #1 

Etakangaye 5/23 5/11 0/12 - - - - 

Imbong 9/28 3/12 6/16 1/23 0/11 1/12 1/6 

Zoula 3/13 3/7 0/6 0/8 0/2 0/6 0/2 

Ibea 1/6 0/1 1/5 0/1 - 0/1 - 

Grand Etoumbi 0/6 0/1 0/5 0/9 - 0/9 - 

Ego Pouma 0/1 - 0/1 1/9 0/5 1/4 - 

Massombo 1/6 1/1 0/5 0/3 0/2 0/1 - 

Mazingo 4/11 1/5 3/6 0/23 0/14 0/9 0/1 

Route #2 

Matoa - - - - - - - 

Mbeza 4/7 3/5 1/2 1/5 0/1 1/4 0/5 

Malassa 1/7 1/6 0/1 0/3 0/1 0/2 - 

Mekouma 10/34 7/12 3/22 0/1 - 0/1 0/8 

Ntolo 3/20 2/8 1/12 0/2 - 0/2 0/4 

Mendemba 2/26 0/7 2/19 - - - - 

Ilahounéné 1/8 0/5 1/3 - - - - 

Ekata 0/18 0/11 0/7 0/5 0/1 0/4 - 

 Total 44/214 26/92 18/122 3/92 0/37 3/55 1/26 

 Seroprevalence (%) 20.6 28.3 14.8 3.3 0.0 5.5 3.8 

  95% CI [15.4-26.6] [19.4-38.6] [9.0-22.3] [0.7-9.2] [0.0-9.5] [1.4-15.1] [0.0–19.6] 
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304 

Explanatory variables were not collinear (VIFs (Variance Inflation Factor) less than 2) in the 305 

full model including all explanatory variables (species, age, gender, period of sampling). 306 

According to AIC, two models were suitable for describing small ruminant seroprevalence and 307 

thus were analyzed using a multi-model inference approach. These two best models included 308 

species and period of sampling as explanatory variables. The seroprevalence in goats was 309 

significantly higher than in sheep (p<0.001; odds ratio (OR) = 8.1, 95% CI [1.4–27.1]), whereas 310 

the period of sampling was not significant using the multi-model inference.  311 

 312 

Discussion  313 

Even almost 100 years after the first report of RVF, outbreaks are still difficult to 314 

anticipate and control, because the drivers of RVF endemicity are not clearly understood. The 315 

multiplicity of vertebrate hosts and mosquito species involved in the RVFV transmission cycle, 316 

the diversity of ecosystems in which RVFV occurs and the global change in human activities 317 

along with their environmental dynamics, make the entire epidemiological RVFV cycle 318 

complex and hard to determine. Although sylvatic circulation has been suspected for a long 319 

time in Central Africa, RVF rarely occurs in an epizootic form in livestock and very few clinical 320 

cases of infection have been reported in humans. The aim of this study was to investigate the 321 

circulation of RVFV in non-human vertebrate hosts living in the forest (wildlife) and villages 322 

(domestic animals) in northeastern Gabon.  323 

  324 

Sylvatic compartment 325 

We here detected the RVFV genome for the first time in a forest environment in two 326 

wildlife ruminant species (duiker antelopes, C. callipygus and P. monticola) sampled in three 327 
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neighboring villages in northeastern Gabon in a rainforest area. The sequencing of the S 328 

segment showed that RVFV detected in these duikers clustered with a sequence of RVFV from 329 

Namibia in 2004, closely related to the Egyptian clade A based on the Bird et al. and Grobelaar 330 

classifications [34,41]. Unfortunately, the lack of recent RVFV sequences precludes 331 

establishing links with strains circulating in Central Africa. Our results clearly demonstrate the 332 

circulation of the virus in wild animals. However, the mode of circulation of this virus remains 333 

unknown and the community of potential RVFV mosquito vectors in forest ecosystems poorly 334 

characterized, thereby requiring further investigation to model the virus transmission and 335 

maintenance. Nevertheless, several mosquito species incriminated as potential RVFV vectors 336 

(at least 14) are present in Gabon [10,42,43]. For genus Aedes (subgenus Neomelaconion), Ae. 337 

macintoshi has previously been reported in the country (as Ae. lineatopennis), as well as Ae. 338 

palpalis (from which the virus was previously isolated in a forest in the CAR). Interestingly, 339 

among the potential vectors present in Gabon, Anopheles coustani has been shown to bite wild 340 

ungulates in the forests (including C. callipygus), as well as six additional anopheline species 341 

(An. carnevalei, An. marshallii, An. moucheti, An. obscurus, An. paludis, An. vinckei), making 342 

these species putative candidates for the sylvatic transmission of RVFV in wild ungulates [43]. 343 

Further investigations must focus on mosquitoes that feed on wild ungulates and the 344 

Cephalophinae antelope species, they favor to determine vector candidates and are likely to 345 

shed light on sylvatic vector transmission of RVFV in Gabon.  346 

 347 

Domestic compartment 348 

A cross-sectional serological study on domestic animals living in villages in the 349 

Mekambo area highlighted that goats, sheep and dogs are exposed to RVFV (overall anti-RVFV 350 

antibody prevalence of 15.4% for domestic ruminants), demonstrating its circulation in an 351 

anthropogenic environment. Most of these animals are raised locally with no history of 352 
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importation or vaccination, even though a few of them come from rare imports from the Zadié 353 

Department (or from villages located on the other side of the border, in the Republic of the 354 

Congo) as gifts for weddings (dowries), deaths or religious celebrations [44]. Although our 355 

results suggest RVFV transmission at the edge of the rainforest, the origin of this circulation 356 

could also be explained by possible and rare introductions (purchases, gifts) of infected small 357 

ruminants from another area in Zadié Department or from neighboring villages in the Republic 358 

of the Congo, thus leading to virus circulation in this region. 359 

Our study also showed that the antibody prevalence of RVFV specific antibodies was 360 

higher in goats than in sheep (20.6% versus 3.3%, Table 1C). To our knowledge, such a 361 

difference in seroprevalence levels observed between goats and sheep has not been reported in 362 

previous studies. However, none of them have been conducted in villages located in a forest 363 

environment, notably the recent studies carried out in the Congo Basin [18,19,23]. RVFV can 364 

be transmitted in livestock through different routes: bites of competent mosquito vectors, 365 

aerosols, contact with infected blood, body fluids and tissues of infected animals, aborted 366 

fetuses, placental membranes containing large numbers of virus particles that can either 367 

contaminate the local environment directly or infect animals [45]. In our study area, the small 368 

ruminants are not enclosed in pens and wanders around the villages. In this type of environment, 369 

goats are known to venture to the outskirts of villages readily, especially to the edge of the 370 

forest [46], according to testimonies collected from owners and villagers. Goats would be more 371 

likely exposed to forest-dwelling mosquito vectors, including those that transmit RVFV among 372 

wildlife. In contrast, sheep, which are reared around houses, are likely mainly exposed to a 373 

more domestic mosquito community. Moreover, the sheep and goats of the area may not be 374 

similarly exposed to mosquito vectors, due to qualitative and/or quantitative differences in their 375 

attractiveness to mosquitoes. Although comparative studies of goats and sheep regarding 376 

mosquito attraction are rare, some of them — undertaken in West [47] and East Africa [48,49] 377 
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— suggest that there are both qualitative and quantitative differences. In Nigeria, the overall 378 

exposure of goats to mosquito bites is twice as high in goats as in sheep, but at a specific level, 379 

some mosquito species, such as Anopheles squamosus, incriminated as a candidate vector 380 

species during RVFV epizootics in Madagascar and Kenya [10], prefer (about 4 times as much) 381 

sheep over goats [47]. Among mosquito species involved in RVFV transmission in Kenya, 382 

Aedes ochraceus and Aedes mcintoshi seem to prefer goats over sheep, while the contrary was 383 

observed for Mansonia uniformis [48]. In another study from Kenya, most of the RVFV vector 384 

species (including Ae. mcintoshi) showed no differences in their trophic preferences between 385 

goats and sheep, although Aedes dentatus tended to prefer goats and Culex pipiens preferred 386 

sheep[49]. Nevertheless, the community of potential RVFV mosquito vectors in villages of this 387 

study area as part of the forest ecosystems remains poorly understood. It would be helpful to 388 

better document mosquito species’ blood feeding patterns in the villages of the Mekambo area, 389 

as well as to test for a possible differential host trophic preferences between goats and sheep. 390 

Excess mortality in sheep due to RVFV infection could also explain the differences in 391 

seroprevalence, but no animal owner indicated significant mortality in sheep during the 392 

sampling campaigns. 393 

Very little data is available on RVFV circulation in dogs. To our knowledge, only one 394 

dog was reported seropositive (out of four tested using the hemagglutination-inhibition test) 395 

during the RVFV epizootic in Egypt in 1977–78 [50]. Another study reported RVFV specific 396 

antibodies using the same method in wild dogs (and none in domestic dogs) in Botswana, Kenya 397 

and South Africa [51]. However, these results could not be confirmed by VNT. Interestingly, 398 

despite our small sample size, the only seropositive dog was a hunting dog (1/3 versus 0/23 399 

domestic dogs). Therefore, this dog may have been infected in the forest (via mosquito bites, 400 

or contact with an infected animal or its fluids/tissues), opening an additional opportunity for 401 

the RVFV to be introduced into the domestic compartment and subsequent transmission to 402 
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domestic animals and humans: numerous anthropogenic mosquito species have opportunistic 403 

feeding habits in tropical Africa (e.g. Culex quinquefasciatus, Anopheles gambiae, Anopheles 404 

funestus, Aedes albopictus) [52–55].   405 

 406 

Interconnections between sylvatic and domestic compartments 407 

The interconnections between the sylvatic and domestic compartments in a forest 408 

environment may thus be a source of zoonotic disease emergence, specifically RVFV in our 409 

case. Exploration of RVFV transmission to domestic animals in an anthropogenic environment, 410 

including the identification, the role and the blood-feeding patterns of the potential vectors, 411 

need to be explored. Comparison of viral sequences obtained from wild animals, small 412 

ruminants and dogs can help confirm whether the virus circulates between the sylvatic and 413 

domestic compartments. If there are indeed interconnections, several hypotheses need to be 414 

tested: Are there common insect vectors feeding on both wild and domestic animals? Are there 415 

overlapping areas/ecosystems where animals may be exposed to common vectors? How mobile 416 

are these animals? From which compartment does the virus emerge? 417 

Further studies need to be carried out to understand how RVFV circulates in the forest 418 

environment of Central Africa — which is at the crossroads between West and East Africa — 419 

to investigate the sylvatic circulation of RVFV in Central African rainforests and to explore the 420 

mechanisms by which the virus shifts from its sylvatic compartment to an anthropic one, i.e. 421 

transmission to domestic animals and humans in villages.  422 

This preliminary study also emphasizes the need to develop adequate event-based 423 

surveillance and control measures to limit the threat of RVF, such as awareness campaigns for 424 

villagers to report unusual deaths or abortions in domestic and wild ruminants and on the risk 425 

of RVFV infection through the manipulation of aborted fetuses, if clinical cases occur. Limiting 426 

the movement of livestock can also be proposed as a control measure. Further virological and 427 
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serological dynamic surveys to investigate RVFV circulation (wet and dry seasons) in domestic 428 

animals, wildlife, hematophagous arthropods and in humans can also lead to a better 429 

understanding of RVFV circulation in the forest ecosystem of the Congo Basin. 430 
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