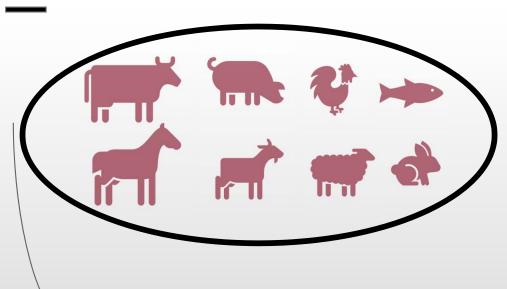


AMU denominator: the OIE Animal Biomass

Methodology presentation


Presented by **Dr Morgan Jeannin OIE Sub-Regional Workshop** on the database on antimicrobial agents intended for use in animals in **Eastern and Southern Africa** *Mombasa*, Kenya, 29-31 Oct. 2019

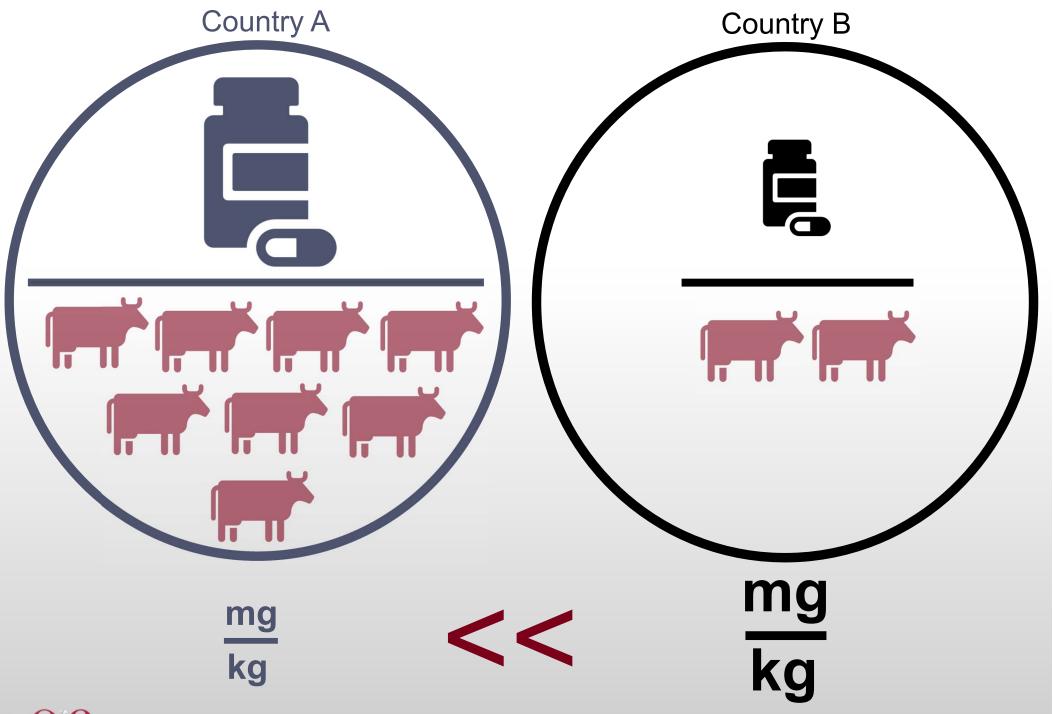
Antimicrobial agents (mg)

Animal biomass (kg)

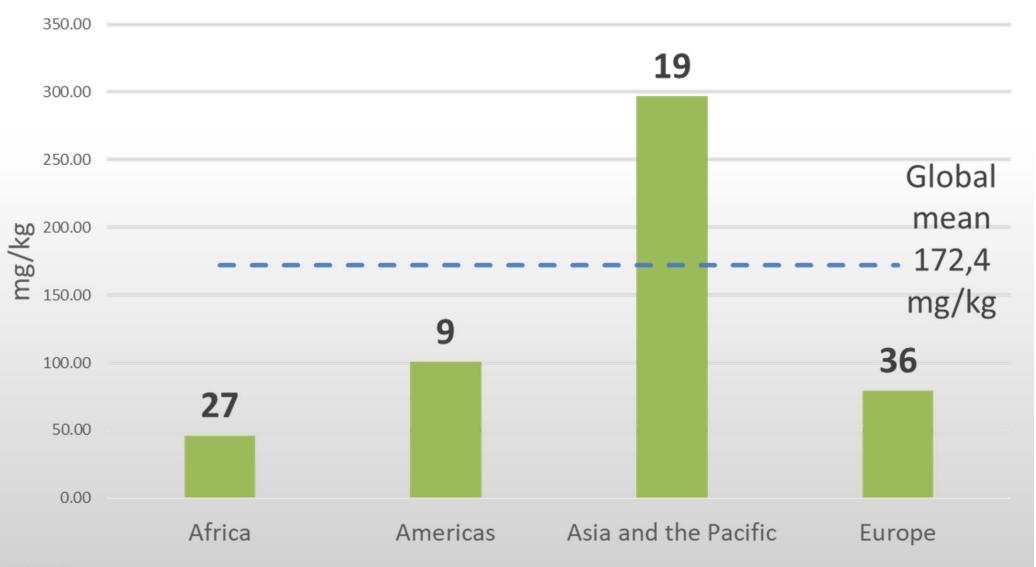
Total weight of food-producing animals in the target year

Calculated Animal Biomass of a country for the target year

Animal Biomass (denominator) what for?



- As acknowledged by the OIE ad hoc Group on AMR each country will have variability of their animals' population numbers, cycle factors and average weights.
- Terrestrial Animal Health Code Chapter 6.9 & Aquatic Animal Health Code
 Chapter 6.3 « When comparing AMU data over time, changes in size and composition of animal populations should also be taken into account. »
- Adjusting the quantitity of AM by the biomass improves the possibilities of,
 - following AMU over time, taking into account the changes in animal population
 - Comparing AMU between different regions, with different species of food-producing animals and different farming systems.



Approach taken by OIE to determine the

Antimicrobial agents (mg)Animal biomass (kg) for 2015?

Why use a 'biomass' denominator?

- Antimicrobial use data vary from one country to another and from one year to another.
- Possible variations of AMU data include:
 - Change in the animal population (increase, decrease, import, export)
 - Occurrence of diseases in the year
 - Availability
 - Effect of national management measures
 - •
- Animal Biomass = Calculated animal population of a country in a year
 - → proxy to measure the population exposed to AM during the year of data collection

Which data are available?

Data needed

The number of animal present in the country for each age category of each species and their mean body weight.

Data available globally

- **WAHIS** census data \rightarrow number of live animals per species at one *time* of the year (+/- age categories)
- **FAOSTAT** → Production data: Number of animals slaughtered, for each species, in a whole year + mass of animal slaughtered
- Published reviews, countries' annual reports...

Participation from the Countries

We need help from Member Countries with validation of average species weights and cycle factors

Census or Production data?

Census data

= Head-count at **one time** in the year

Production data

Head-count & total weight of slaughtered animals for a <u>WHOLE</u> <u>year</u>

How is the biomass calculated?

General principles

- Animals with a life duration of <u>less than one year</u> → Use yearly production data
- Animals with a life duration of more than one year → Use census data, combined with estimates of average weights by sub-region/country.
- Privilege census data when possible → Production data might not reflect backyard slaughter practices

General Methodology

- Animal biomass is calculated using country-level animal population data by species, data-derived estimates of their average weights by sub-region and country, and average reproductive rates of shortlived species (cycle factors).
 - → kilograms animal biomass used as a *denominator* in analysis of antimicrobial use data (mg/kg)

Calculation of average animal weights

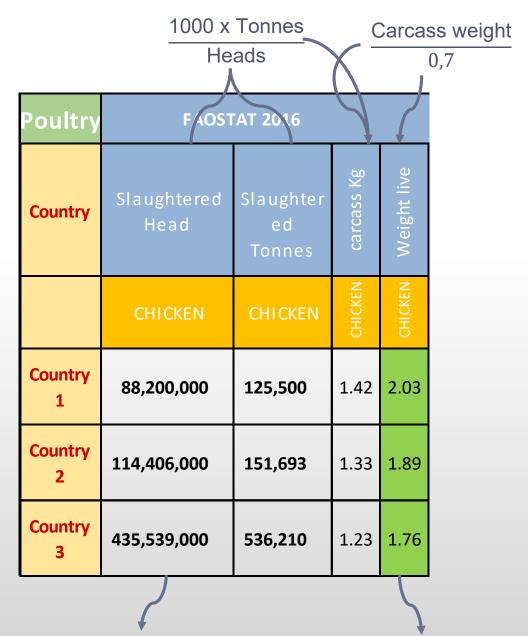
■ From production data → carcass weight

$$carcass\ weight\ (kg) = \frac{weight\ of\ species\ slaughtered\ (kg)}{number\ of\ species\ slaughtered\ (heads)}$$

■ From carcass weight → live weight at time of slaughter

live weight at slaughter
$$(kg) = \frac{carcass\ weight\ (kg)}{conversion\ coefficient\ (k)}$$

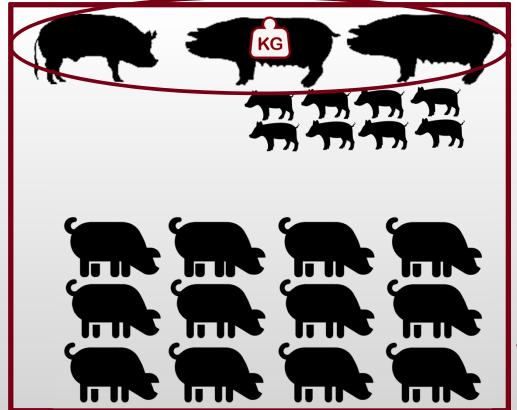
- Different AMU surveillance programs → Different weight calculation methodologies
 - Canada, ESVAC, Thailand: weight at time of treatment
 - USA, Japan: average weight by production category

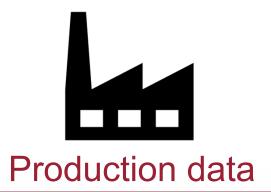

Animal biomass methodology: Poultry

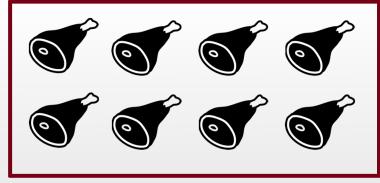
Poultry					FAOSTAT 2016									BIOMASS				
Country	3laughtered Head	Slaughter ed Tonnes	carcass Kg	Weight live	Sla	aughtered Head	Slaughter ed Tonnes	carcass Kg	Weight live	Slaughtere d Head	Slaught ered Tonnes	carcass Kg	Weight live	Slaughtered Head	Slaughte red Tonnes	carcass Kg	Weight live	Calculation with species specific weights
	CHICKEN	CHICKEN	CHICKEN	CHICKEN		URKEY	TURKEY	TURKEY	TURKEY	GEESE + GUINEA FOWL	GEESE + GUINEA FOWL	GEESE + GUINEA FOWL	TAND FRANCO + SEED	DUCK	DUCK	DUCK	DUCK	kg
Country 1	88 200 000	125 500	1,42	2,03	1	00 000	20 700	10,89	15,56	106 000	350	3,30	4,72	49 000	120	2,45	3,50	209 528 571
Country 2	114 406 000	151 693	1,33	1,89		143 000	1 420	9,93	14,19	97 000	460	4,74	6,77	3 657 000	7 183	1,96	2,81	229 651 429
Country 3	435 539 000	536 210	1,23	1,76	13	787 000	99 149	7,19	10,27	997 000	3 301	3,31	4,73	1 706 000	2 218	1,30	1,86	915 540 000

Biomass Poultry

= Biomass Chicken + Biomass Turkey + Biomass Geese + Biomass Duck

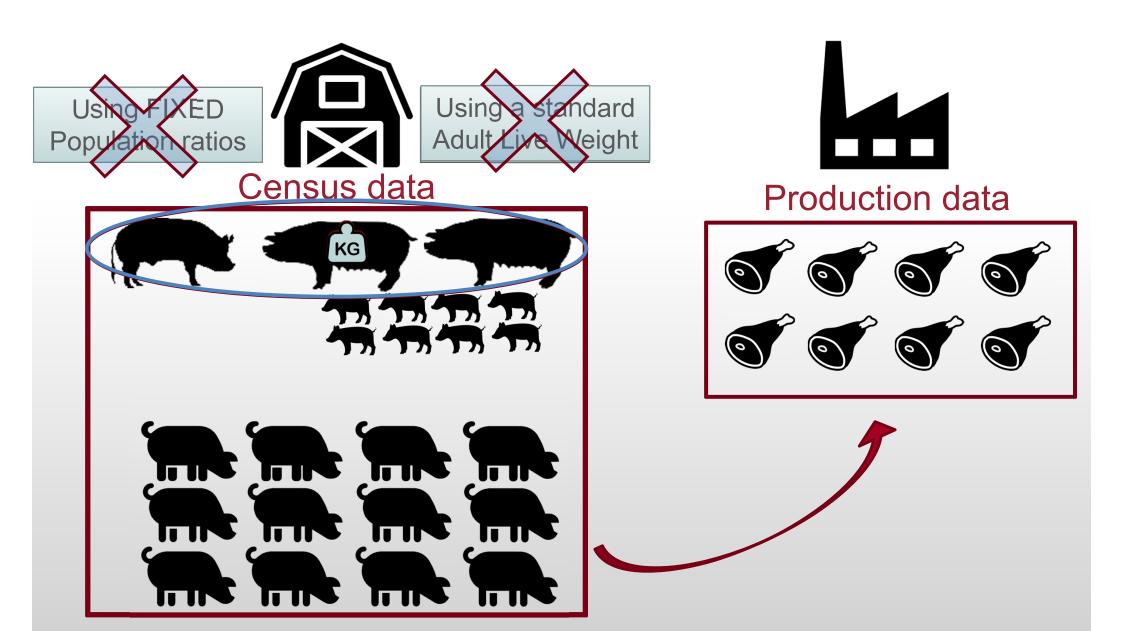

<u>Biomass Chicken</u> = Number Slaughtered Chickens * Mean live weight at slaughter for chickens




Swine biomass calculation

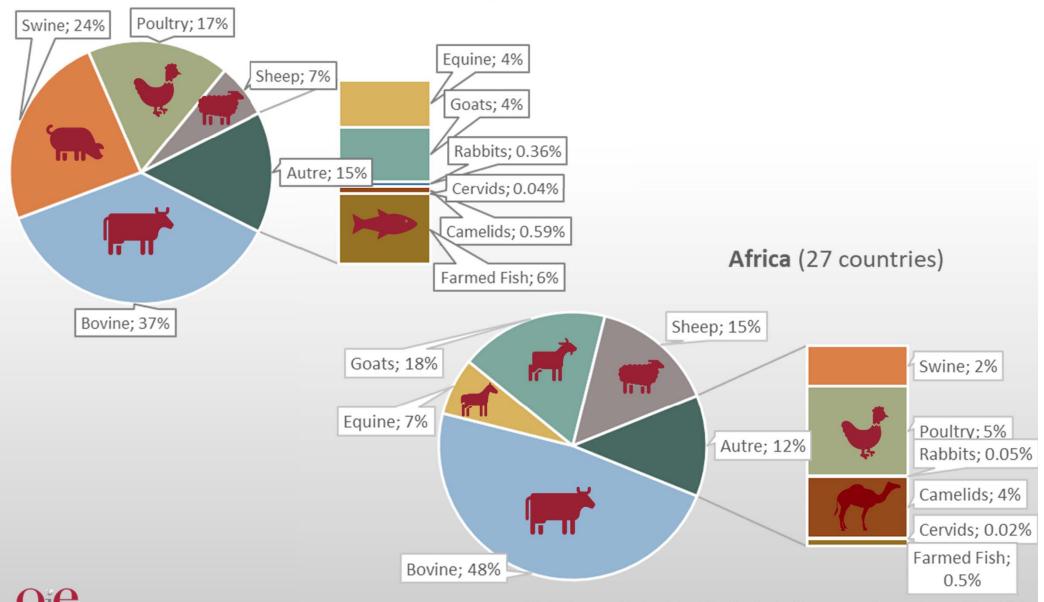
Animal biomass methodology: Swine

Heads Carcass weight 0,78


Swine		WAHIS Census data		FAOSTAT S	Slaughter data 20	16	BIOMASS Swine 2016				
Country	OIE Subreg ion	Live heads 2016	Slaughtered Head	Slaughtered tonnes	Mean weight carcass kg (calculated)	Mean Weight live animal at slaughter (calculated)	Slaughtered Biomass	Slaughtered Biomass + Sow correction factor (WAHIS census data)			
		Swine	pig meat 2016	pig meat 2016	kg	kg	FAOstat production data	FAOstat production corrected by census data			
					Tonnes/Heads	Mean weight*0,78 (conversion factor)	Mean weight live * # heads slaughtered	Biomass slaughtered + (Census * Sow pop. Proportion (9%) * Mean Sow weight)			
Country 1	Α	2 950 713	5 227 573	514 892	98	126	660 117 949	723 853 350			
Country 2	Α	5 217	9 100	472	52	66	605 128	717 815			
Country 3	Α	1 367 423	1 458 334	98 018	67	86	125 664 103	155 200 439			

Biomass Swine = Biomass Slaughtered Swine + Biomass of Living Sows for reproduction Fixed variables

 $Biomass\ Swine = (\#Hs*Wl) + [\#Hl*Sow\ P.pop\ (9\%)*Region\ Mean\ Sow\ weight]$


Swine calculation refinement

Species Composition in weight of Animal Biomass for Countries Reporting Quantitative Data for 2015

Global (91 Countries)

Refinement of Animal Biomass Calculation

 To refine the calculations of the Animal Biomass: considering region/country particularities

- Continued collaboration of the countries to research and verify:
 - Average animal weights
 - Carcass conversion coefficients
 - Distribution of age groups in a species
 - Cycle factors
- Evolution of OIE-WAHIS system: Importance of countries' commitment in reporting animal populations
 - Animal categories + sub-categories by age groups
 - Increased country-level understanding: Cycle factors, Mean live weight at slaughter...

OIE Methodology- publication on 25th September 2019

OIE Annual Report on Antimicrobial Agents Intended for Use in Animals: Methods Used

METHODS ARTICLE

Front. Vet. Sci., 25 September 2019

https://doi.org/10.3389/fvets.2019.00317

→ Develops the Methodology of the OIE AMU Data Collection and the OIE Calculation of the Animal Biomass

Impact Factor 2.029 | CiteScore 2.20 More on impact >

Veterinary Epidemiology and Economics

Thank you for your attention

Dr Morgan Jeannin

Chargé de mission - Antimicrobial Use Database, Antimicrobial Resistance and Veterinary Products Department

12, rue de Prony, 75017 Paris, France www.oie.int media@oie.int - oie@oie.int

