

The use and application of epidemiological clusters in surveillance and control of Rift Valley fever

Véronique Chevalier

UR AGIRs « Animal et Gestion Intégrée des Risques» CIRAD – ES

Epidemiological system

(from Rodhain, 1985)

Ecotope

Climate

- Rainfall
- Humidity
- Temperature
- Wind

Landscape

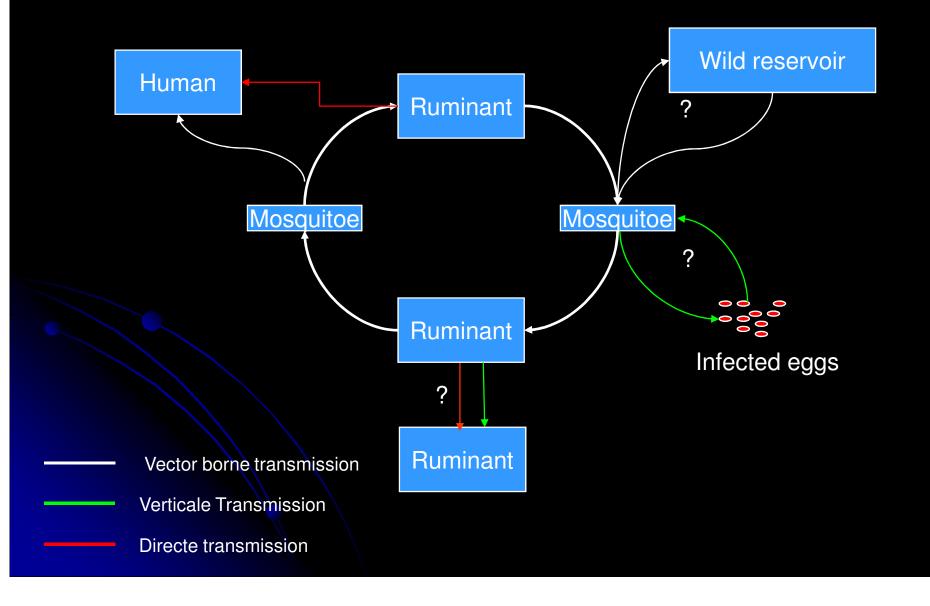
- -Vegetation
- -Soil composition
- Structure

Animal environment

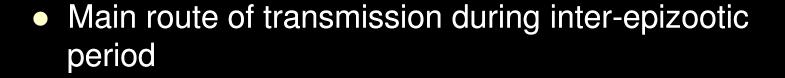
- -Density
- -Diversity
- -Herd structure
- -Movements

Fundamental pathogenic complex

Human environment


Behaviour

- Socio-economy
- Demography
- Culture


Politic

- Public health
- Environment
- Economy
- Lanscape management

Fundamental pathogenic complex: one virus, many vectors and many hosts

Vector transmission

- Vectors are infecting when feeding on viramic host
- Virus isolated in 6 mosquito genera
 - Aedes, Culex, Mansonia, Anopheles, Coquillettidia et Eretmapodites
- More than 50 potential vectors (ticks ?? Hyalomma truncatum)
- Main vectors are Aedes and Culex genera
 - Bio-ecology
 - Epidemiological role

Main vectors Aedes and Culex

Aedes

- Mammophilic
- Females lay their eggs in the pond mud
- Eggs survive from one year to the next one in the dry mud
- Need of a dry period before hatching
- Massive eclosion as soon as efficient rain
- => Need of alternating between filling and emptying

- Ornithophilic
- Colonization from one pond to the next
- Females lay their eggs on the water surface
- Eggs can not survive with dessication

=> Need of permanent water

Permanent water-Irrigated areas

Dry areas and temporary ponds

Vertical transmission

- Possibility for an infected female to transmit the pathogen to its descendants
- Demonstrated in Aedes mcintoshi (Kenya) (Linthicum, et la, 1995)
- Could explain the persistence of the virus in Sahelian areas and Kenya
 - Infected females lay eggs
 - Eggs survive in the mud for several years
 - With the first rain of the following year, eggs are flooded and hatch: some of these new mosquitoes are infected!!
 - => initiation of a new cycle

Direct transmission

- Main route of transmission during epizootic period
 - Animal => animals
 - Animal => humans
- Virus source
 - secretions (nasal, ocular, vaginal)
 - foetus, placenta, meat and blood of ill animals
- The infection occurs when handling infected products, ill animals, or with infectious aerosols
- Humans are dead-end hosts

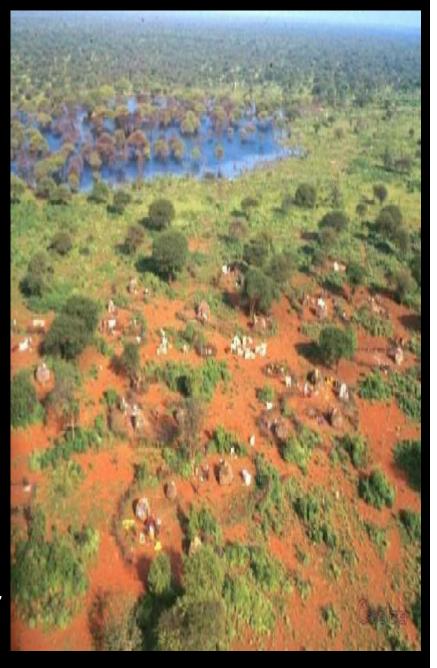
Potential reservoirs

Persistence of the virus during inter-epizootic ???

- Virus identified in some wild species
 - African buffaloes (Syncerus caffer)
 - Springboks (Antidorcas marsupialis)
 - Damaliscus (Damaliscus albifrons)
 - Wild boars (Phacochoerus aethiopicus)
- Antibodies anti-RVF detected in
 - Rodents (Mastomys erythroleucus, Aethomys namaquensis et Arvicanthus niloticus)
 - Bats

Several epidemiological systems ...

Fundamental pathogenic complex



- \Rightarrow components
- ⇒ transmission mechanisms
- \Rightarrow risk factors

Dambos (Kenya)

- Intense rainfall events
- => pullulation of <u>Aedes</u>, some may hatch being infected
- <u>Culex</u> take over for the virus transmission when *Aedes* population decreases and inundated areas are permanent.
- Correlation between heavy rainfall and RVF outbreaks
- ⇒ Persistence by vertical transmission in Aedes mcintoshi

Irrigated areas

- Hot and dry climate
- Particularly low rainfall levels
- Permanent water = suitable habitats for Culex mosquitoes
- Egypt : viral circulation in 1993, 1997, 1999 and 2003 => endemicity
- Senegal river basin : endemicity
- Yemen : low level endemic circulation?
- Egypt :Culex pipiens and C. antennatus suspected
- Senegal River basin: Ae. vexans + C. poicilipes
- Yemen?
- Persistence mechanism ??
 - « overwintering » infected Culex?
 - Rodents?
 - Regular introduction by animal trade ?

Yemen

Egypt

Temporary pond areas

Ferlo (Senegal)

- Sahelian climate and landscape
- Annual rainfall between 300 and 500 mm, from July and et October
 - Strong inter and intra annual variations

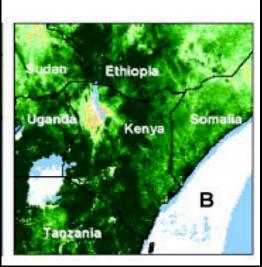
Temporary pond areas

- Similarity to Dambos ?
 - Dry season / wet season
 - Vectors = Aedes and Culex
- Emergence risk factors ?
 - Risk intensity varies from one pond to the next
 - => role of ecological factors? Pond structure? Vegetation?
- Persistance mechanisms unknown
 - Vertical transmission with Aedes vexans?
 - Rodents ?
 - Introduction via nomadic herds?

Forest ecosystem ex : Madagascar

- Tropical climate
 - Fresh in highlands-
 - Hot in East Coast
 - High annual rainfall level
- First RVFV isolates (1979) and first epidemic was reported
- Outbreak in 1991
- Outbreak in 2008
- Vectors?
 - Culex univittatus? pipiens? quinquefasciatus?
- Virus persistence?
 - Rodents?
 - Animal movements

Surveillance Tools availability


- Passive Surveillance
 - passive reporting of abortions by veterinary services
 - =>awarness
 - =>constant information of breeders, technicians, vets etc...
- Targeted Surveillance = Sentinel herds
 - Targeting of locations and periods of surveillance.
 - Need a dense network for a good sensibility
 - Diagnostic accurate and rapid
 - Strong link between field and sanitary authorities
- Entomological Surveillance = mosquito trapping
 - Accurate knowledge of ecological areas
 - Regular trapping
 - Abundance dynamic => identification of risky periods => warning
 - Detection of new potential vectors
- Methodology should be adapted according to the <u>epidemiological processes</u> <u>involved</u>, the <u>actual status</u> and <u>potential evolution</u> of the considered area

East Africa-dambos

 Correlation between heavy rainfall and outbreaks = accurate predictive models

- In addition:
 - Early reaction program
 - Planned control measures
 - Vaccine and insecticide stocks
 - Constant alert of farmers and veterinary authorities
 - Evaluation of vaccination strategies according to the ecological and socioeconomical context a
 - Evaluation of the impact of vaccination on the disease pattern in endemic areas.

Irrigated areas Egypt, Senegal River basin...

- Transmission models using the basic reproduction number (R0) => to test different climatic scenarios and the relevance of different vaccination strategies.
- Evaluation of the impact of vaccination on the disease pattern
- constant alert of farmers and veterinary authorities
- Traditional passive surveillance network to be implemented to detect increased incidence
- Vaccine stocks

Temporary pond areas

- Risk areas, key emergence factors, and persistence mechanisms remain to be identified
- Potential evolution unknown
- =>Transmission models using the basic reproduction number (R0) to test different climatic scenarios and the relevance of different vaccination strategies.
- =>Traditional passive surveillance network to be implemented to detect increased incidence
- => Reinforced targeted surveillance in known risk areas such as the Ferlo area

Forest systems

 Risk areas, key emergence factors, and persistence mechanisms remain to be identified

 Traditional passive surveillance network to be implemented to detect increased incidence

Information of breeders, technicians ...

Free but at risk areas

- Countries that have experienced an outbreak
- Countries that share ruminant trade links with endemic areas
- Countries with endemic neighbours
 - =>How can we evaluate and control the risk efficiently?
- Quantification of ruminant flows and their variations
- Analysis of the risk of endemisation
 - a competent vector census
 - suitable vector habitat mapping
 - host density mapping
- Minimum information of health actors
- Passive surveillance?

At the continental and international scale...

- a global surveillance network should be implemented in order to:
 - gather together available scientific information, identify risk areas, and catalogue the ecosystems and environmental conditions considered or predicted to be at risk ("emerging disease hot-spots")
 - share information about virus circulation and guarantee the transparency of countries' RVF status.
 - identify, test, and harmonize control measures (vaccination, insecticides treatments) to be implemented in case of introduction

