

Challenges to control RVF disease:

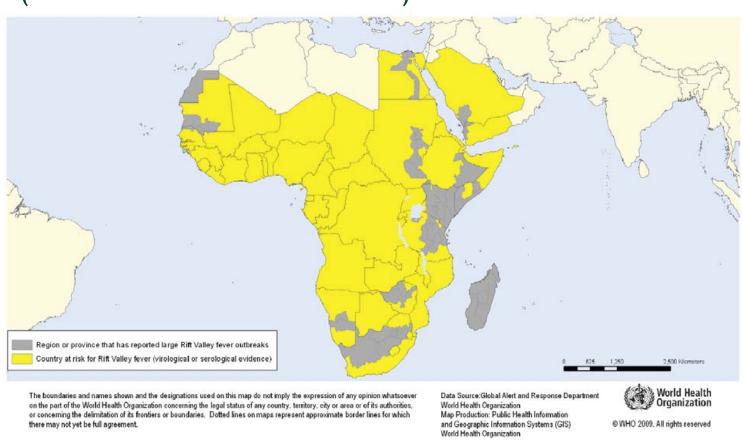
Research required to develop new diagnostic tools

Dr. BODJO S.C.

Senior Diagnostic Reagent Officer African Union – Pan African Veterinary Vaccine Centre (AU-PANVAC)

Outline

- ☐ Impact and importance of RVF
 - Animal health and trade
 - Human Health
- ☐ Laboratory Diagnostic of RVF
 - Current available tools
 - Opportunities for the development of new tools
- □ AU-PANVAC activities to support Animal
 Diseases diagnostic
- □ Conclusion


☐ Animal Health and Trade

- Zoonotic insect-borne viral disease caused by a Phlebovirus.
- It can cause abortion & mortality.
- Primarily affects ruminants, but also has the capacity to infect humans & many other species.
- ❖ Irregular occurrence (every 5-7 years) reliant on the presence of susceptible animals, build-up of the mosquito vector population and the presence of the virus.

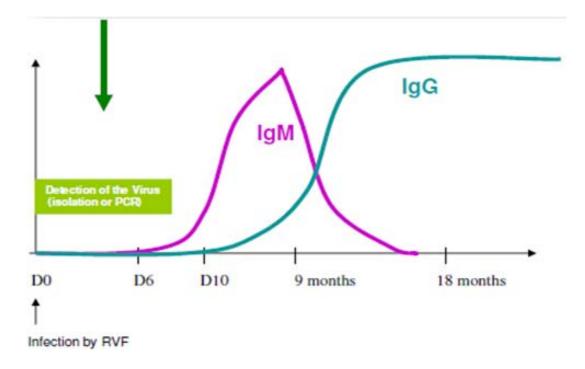
Animal Health and Trade...

Localised in Africa, RVF spread to the Middle-East (Saudia Arabia & Yemen) in 2000

Geographic distribution of RVF outbreaks in animals and humans, 1997–2010 (Source: World Health Organization)

☐ Animal Health and Trade...

- ❖ 1997/1998: Outbreak in Kenya and Somalia caused ban of livestock imports to the Middle-East from East Africa,
 - Affected Livestock export trade in the region particularly in Somalia
 - In 1997, year before the ban, **2.8 million live small ruminants** were exported from the port of Berbera (Somaliland region)
 - Losses due to the ban from Feb. 1998 to May 1999 were estimated at \$109 million for the region of Somaliland alone.

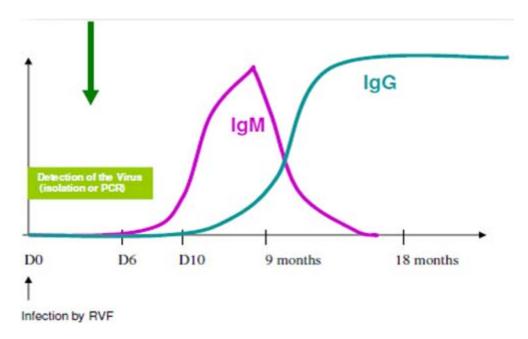

☐ Impact on Human health: Zoonotic disease

Outbreak dates	Geographic distribution	No. deaths confirmed
Dec 1997- Jan 1998	Kenya,	478
	Somalia,	-
	Tanzania	-
Sep-Dec 1998	Mauritania	6
Aug-2001 Sep 2000	Saudi Arabia,	123
	Yemen	
Nov 2006- March	Kenya,	158
2007	Somalia,	51
	Tanzania	109
Sep 2007- Jan 2008	Sudan	230
Jan 2008- May 2009	Madagascar	26
Feb 2010- May 2010	South Africa	26
Sep 2010- Dec 2010	Mauritania	13

(Osman Dar et al., Emerging Inf. Dis. • Vol. 19, No. 2, Feb. 2013)

- Available tools: Common tests described in the OIE
 Manual of Diagnostic Tests and Vaccines (Chap 2.1.14)
 - ❖ Identification of RVF virus: early stage of infection

Virus isolation using cells lines (Vero, BHK, CER-Chicken Embryo Reticulum) & primary kidney or testis cells (calves/lambs)



- ☐ Available tools...
 - **❖** Identification of the agent ...
 - For IFA on smears of liver, spleen and brain
 - Molecular Techniques: several technique available
 - ✓ Conventional PCR: based on NSs (*Garcia S., et al. 2001*), One step RT-PCR amplicon, 298 bp
 - ✓ Real time PCR
 - Protocol SYBER GREEN: based on L-GENE
 (*Bird et al.2007 and Labeaud et al., 2011*),
 Amplicon size 90 bp & specific dissociation peak
 is at 80°C
 - Protocol TAQMAN: Drosten et al., 2002.
 - > ELISA for Antigen detection
 - √ Immuno-Capture/sandwich ELISA

Girran

Laboratory Diagnostic of RVF

- ☐ Current available tools...
 - Specific antibody (Ab) detection
 - ➤ Kinetics of IgM (early antibodies) and IgG (later and persistent antibodies) directed against RVF virus

➤ Ab detection used for RVF surveillance & Early warning: **IgM signs infection or vaccination**

- ☐ Current available tools...
 - **❖** Specific antibody detection...
 - Virus neutralisation tests (VNT)
 - ✓ Most specific diagnostic serological tests but require appropriate biosecurity facilities and qualified personel.
 - ELISA techniques: most widely used to detect IgM and IgG directed against RVF virus
 - ✓ Commercial ELISA Kits available
 - Capture ELISA: IgM & IgG ELISA Kits
 - iELISA (use recomb. Ag)
 - cELISA (no anti-species problems)

- □ Opportunities for the development of new tools:
 - The new tools should facilitate livestock trade:
 2 main research fields
 - 1. Field tests: pen-side rapid assay
 - ➤ No commercial rapid "pen-side" available
 - ➤ Such test would be useful for early detection of the disease at the field level (rural disease)
 - > Research on Pen-side test are underway for:
 - ✓ Antibodies detection: supported by GALVmed
 - based on RVF virus nucleoprotein for detection of antibodies in blood samples
 - ✓ Pen-side test for Antigens detection
 - Need to be encouraged

- □ Opportunities for the development of new tools...
 - 2. Diagnostic tests for DIVA (Differentiate Infected & Vaccinated Animals) control strategy
 - > Several teams are working on DIVA tests approach
 - ➤ Candidate Antigen: RFV virus Non-Structural Protein NSs (which is involved in the virulence)
 - ✓ **Publication 1**: McElroy et al. (2009), Virology Journal, 6:125
 - Deleted RVF virus-ΔNSs and companions tests (ELISA used as antigen NSs protein)
 - Antibody response in rats show that ELISA can distinguish animals infected with RVFV (wt) from those vaccinated with a ΔNSs virus

- ❖ Diagnostic tests for DIVA (Differentiate Infected & Vaccinated Animals) control strategy...
 - ✓ **Publication 2**: Fernandez et al., (2012), Clinical and Vaccine Immunology Vol. 19, p. 5–10
 - Sera from animals naturally infected by RVFV shown NSs antibodies
 - > Conclusion:
 - ✓ ELISA using NSs protein as antigen is discussed as possible companions DIVA tests associate with the use of deleted ΔNSs-RVF virus as vaccine.

AU-PANVAC activities to support the disease diagnostic

- ☐ International Independent Quality Control of Veterinary Vaccines produced in Africa and imported to Africa.
- Produce and distribute essential biological reagents for animal diseas diagnosis and surveillance
- ☐ Facilitate the standardization of veterinary vaccines production and harmonization of their quality control techniques in Africa
- ☐ Promote the transfer of appropriate vaccine production technologies in Africa;
- Provide training and technical support services to veterinary laboratories.

Identification of Vet. Labs need in diagnostic reagents

☐ Consultative Workshop

- Objective of the Consultative workshop
 - > Consult Veterinary Laboratories to:
 - ✓ identify their needs on essential biological reagents for diagnostic of animal diseases.
 - ✓ Develop a strategic framework document for biological reagent production and distribution in Africa.
- **❖ Participants from 13 AU MS Countries invited**
- * The workshop took place in AUC Headquarter (Addis-Ababa, Ethiopia) on 10th and 11th July 2013

Consultative Workshop

Participants at the Consultative Workshop

Issues were discussed during the Workshop:

- Priority animal diseases in each African region (Central, Eastern, Southern and West).
- ❖ The challenges faced by member states in the procurement of biological reagents for laboratory activities.
- ❖ The importance of the implementation of Quality Management System in all National Laboratories.
- The cost of diagnostic biological reagents.

List of priority animal diseases

- ☐ AU-PANVAC should consider for reagents and assays development
 - Rank 1: Peste des Petits Ruminants (PPR), Newcastle Disease (ND), Rabies, Lumpy Skin Disease (LSD), Africa Swine Fever (ASF), Foot-and-mouth disease (FMD), Rift Valley Fever (RVF)
 - * Rank 2: Infectious Bursal Disease (IBD) or Gumboro disease), Goat & Sheep Pox, Brucellosis, Contagious Bovine Pleuropneumonia (CBPP), Contagious Caprine Pleuropneumonia (CCPP),
 - * Rank3: Tuberculosis Bovine (TB), African Horse Sickness (AHS).

Current Reagents and Assays available at AU-PANVAC

☐ Monoclonal antibodies generated

- PPR monoclonal antibodies
 - > PPR Mabs were generated and characterized
 - > Used in IFA and ELISA.
- * Mycoplasma (Mccp): agent of Contagious Caprine PleuroPneumonia (CCPP)
 - Mccp Mabs were Generated
- ☐ Well characterised Antisera
 - PPR (Origin: goat & rabbit)
 - * LSD, Sheep & Goat Pox (Origin: rabbit)

CCPP (Origin: goat & rabbit)

Current Reagents and Assays available at AU-PANVAC...

☐ Assay developed at AU-PANVAC under validation

- ❖ PPR: 2 assays
- ➤ Indirect ELISA (iELISA): Use an antigenic marker specific to PPRV (on N Protein)
- ➤ Blocking ELISA(bELISA): Use a PPRV specific mab (anti-H Protein)
- * CCPP: 2 assays

- ➤ Immuno-capture ELISA (ICE)
- ➤ Blocking ELISA(bELISA): Use a specific mab

Conclusion

- □ News assays development/improvement on the following field are required: in relation with Trade
 - Pen-side rapid test for early screening and surveillance of the RVF disease
 - Differentiation Infected from Vaccinated Animals (DIVA) tests
- ☐ AU-PANVAC as per its mandates will contribute to:
 - Develop new or improve diagnostic assays
 - Produce these assays locally to reduce the cost of diagnostics for labs

THANKS FOR YOUR ATTENTION