

October 29th 2025, Entebbe, Uganda WOAH Regional Workshop on Vaccination and Alternatives to Antimicrobials

17. Recent innovations in alternatives to antimicrobials and veterinary vaccine technology

Vish Nene, Chair of Scientific Committee of STAR-IDAZ IRC
Emeritus Fellow, International Livestock Research Institute, Nairobi, Kenya
Adjunct Faculty, Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
E-mail: vishneneke@gmail.com

Resolution No 29, adopted during 92nd General Session

'Veterinary vaccines and vaccination: from science to action – reflections for change'

Resolution No.29 adopted by the WOAH General Assembly.

- Recommendations include:
 - International collaboration on vaccine research and development
 - Development of Target Product Profiles
 - Facilitate implementation of the Nagoya protocol
 - Development and update of international standards
 - Assessment of provision for aquatic animal vaccines
 - · Global alert system on substandard and falsified veterinary products
 - Improvement of forecasting and procurement
 - · Strategic use of vaccination to contribute to sustainable disease control
 - Recommendations of support from WOAH Reference Centres
 - · Update of priority list for which vaccines could reduce antimicrobial use

STARIDAZIRC, Background

STAR IDAZ

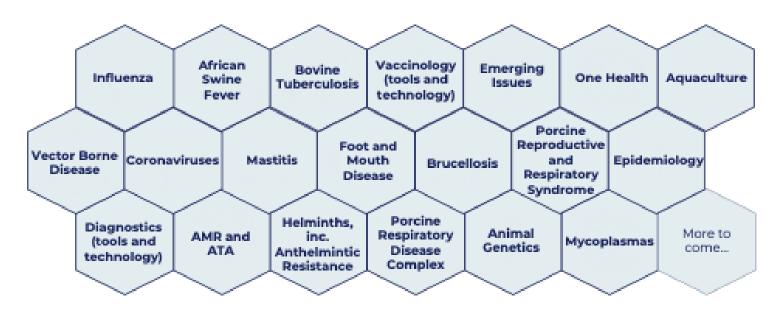
Global **St**rategic **A**lliances for the Coordination of Research on the Major Infectious **D**iseases of **A**nimals and Zoonoses

A network of funders and research program owners who form an Executive Committee (ExCo)

Supported by a Secretariat (SIRCAH) & a Scientific Committee (SC)

36 **PARTNER ORGANISATIONS**

23 COUNTRIES +\$2.5B



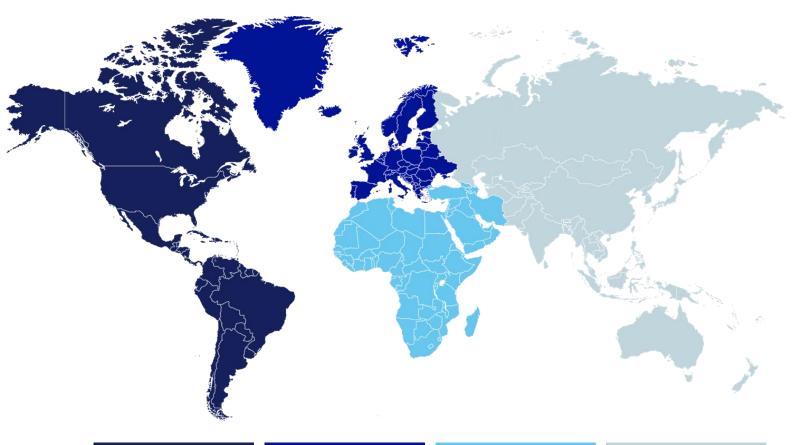
Objective and deliverables

The overall objective of STAR-IDAZ IRC is to coordinate research at international level to accelerate the delivery of new tools and improved animal health strategies

Deliverables include:

- Candidate vaccines, diagnostics and therapeutics
- Other animal health products and procedures
- Key scientific information/tools to support risk analysis and disease control, e.g., research roadmaps

Priority topics as requested by the Executive Committee



Regional Networks

Objectives

- To discuss and agree research priorities for the Region
- To explore the opportunities for sharing resources, including access to samples/strains of organism, specialised facilities and expertise
- To identify international funding opportunities

Americas

Europe

Africa & Middle East

Asia & Australasia

Research prioritisation and coordination

Avoid duplication:

Maximize resources by reducing redundant efforts

Improve data sharing:

Encourage sharing of information and better decision making

Foster collaboration

Accelerate faster discoveries

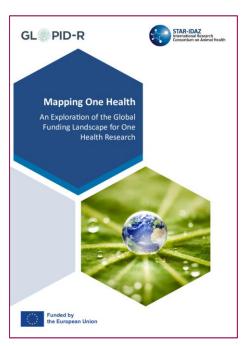
Enhance impact:

Align policy priorities and global health research priorities

Optimise funding:

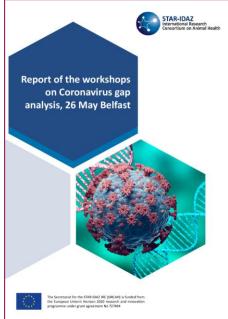
Support strategic investment in critical areas to drive impactful change

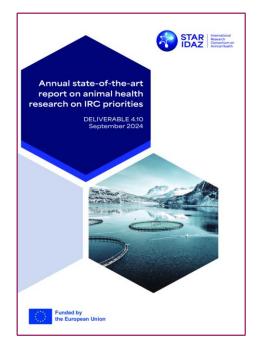
Resources for the Executive Committee and animal health community


Research reviews

Research roadmaps and gap analyses

Executive summaries


Workshop reports


State-of-the-art reports

Research Roadmaps: www.star-idaz.net

Received: 2 August 2020 Revised: 25 August 2020 Accepted: 1 September 2020

DOI: 10.1111/tbed.13821

ORIGINAL ARTICLE

Construction of generic roadmaps for the strategic coordination of global research into infectious diseases of animals and zoonoses

Gary Entrican¹ | Johannes Charlier^{2,3} | Luke Dalton⁴ | Stefano Messori⁵ Sadhana Sharma⁶ | Robert Taylor⁷ | Alex Morrow⁴

¹The Roslin Institute at The University of Edinburgh, Edinburgh, UK

²AnimalhealthEurope, Brussels, Belgium

3Kreavet, Kruibeke, Belgium

⁴Department for Environment, Food and Rural Affairs (Defra), Nobel House, London,

⁵The World Organisation for Animal Health

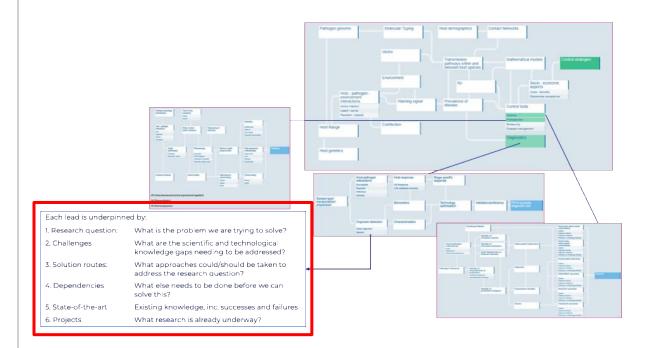
⁶United Kingdom Research and Innovation - Biotechnology and Biological Sciences Research Council (UKRI-BBSRC), Swindon,

⁷Centre for Agriculture and Bioscience International (CABI), Wallingford, UK

Correspondence

Gary Entrican, The Roslin Institute at The University of Edinburgh, Edinburgh, UK. Email: gary.entrican@roslin.ed.ac.uk

Funding information


European Union Horizon 2020 Research and Innovation Programme, Grant/Award Number: 727494

Abstract

The Strategic Alliance for Research into Infectious Diseases of Animals and Zoonoses (STAR-IDAZ) International Research Consortium (IRC) coordinates global animal health research to accelerate delivery of disease control tools and strategies. With this vision, STAR-IDAZ IRC has constructed four generic research roadmaps for the development of candidate vaccines, diagnostic tests, therapeutics and control strategies for animal diseases. The roadmaps for vaccines, diagnostic tests and therapeutics lead towards a desired target product profile (TPP). These interactive roadmaps describe the building blocks and for each the key research questions, dependencies, challenges and possible solution routes to identify the basic research needed for translation to the TPP. The control strategies roadmap encompasses the vaccine, diagnostic tests, and therapeutic roadmaps within a wider framework focusing on the inter-dependence of multiple tools and knowledge to control diseases for the benefit of animal and human health. The roadmaps are now being completed for specific diseases and complemented by state-of-the-art information on relevant projects and publications to ensure that the necessary research gaps are addressed for selected priority diseases.

KEYWORDS

animal health, diagnostics, epidemiology, roadmaps, therapeutics, vaccines

- Provides a structure and focus on where research is most needed, identifying bottlenecks and critical gaps
- Interactive, 'living' tool publicly available online at www.star-idaz.net

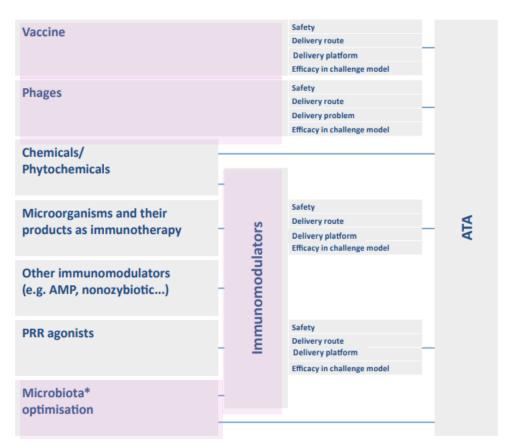
For more information on STAR IDAZ IRC, how to become an IRC partner or join the regional networks:

- www.star-idaz.net
- in www.linkedin.com/company/star-idaz-irc/
- X Twitter.com/StarIdaz

Contact STAR IDAZ IRC Secretariat (SIRCAH):

- A Madeline Newman (Madeline.Newman@defra.gov.uk)
- Valeria Mariano (v.mariano@woah.org)

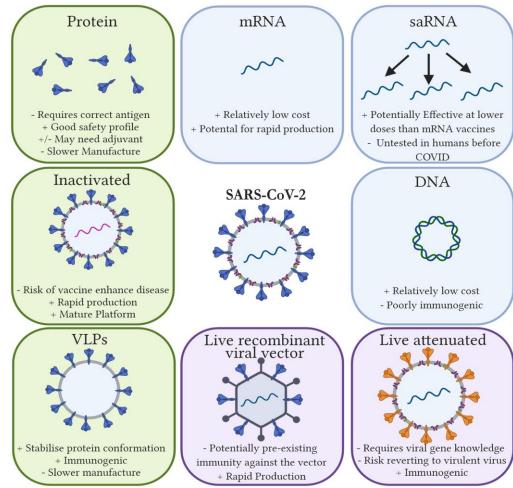
Innovations in alternatives to antimicrobials


AMR & Alternatives to Antibiotics (ATA)

The development of ATA is recognized an important component in the fight against antimicrobial resistance (AMR) for the benefit of both human and animal health

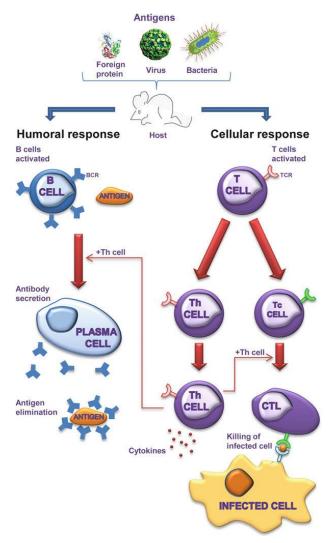
Two publications on website:

- Summary of gap analysis
- Highlight research priorities and gaps
- Roadmaps for phage, immunomodulators and manipulation of the microbiome



Innovations in veterinary vaccine technology

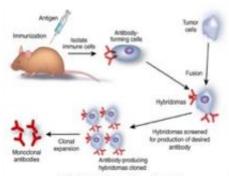
The COVID-19 pandemic spurred investment in vaccine technologies (and rapid response)



Many COVID-19 vaccines were based on the spike "S"antigen, yet they performed differently – why?

Usually associated with quality and/or duration of protective immune responses – need tools and methods to map these

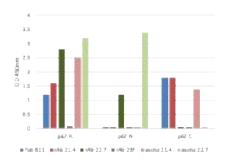
Role of acquired immune responses in vaccine R&D



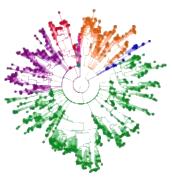
- > Rule of thumb:
 - Antibody responses function on "extra-cellular" pathogens
 - Cell mediated immune responses function on "intracellular" pathogens (Th and CTL)
 - Often both will play a role in mediating immunity to disease
- Most vaccine studies focus on antibody responses
 - Some look at Th responses
 - CTL is often not assessed, as this is technically difficult
- Antigen and epitope-specificity is determined by BCR and TCR expressed on B and T cells

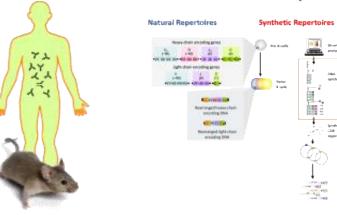
Multiple approaches for antibody epitope discovery

Mouse hybridoma technology

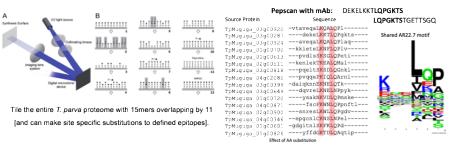


Milstein & Kohler, 1975


Use any animal

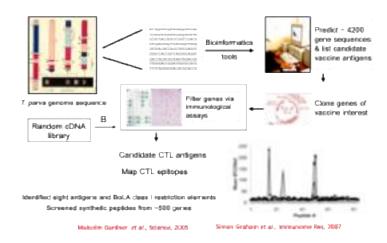

Sequence Ab genes and express as recombinant Abs

"Humanized" mouse

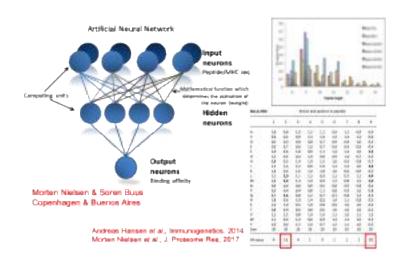

Immune repertoire profiling

Synthetic antibodies

High-density peptide chips to & linear antibody epitopes

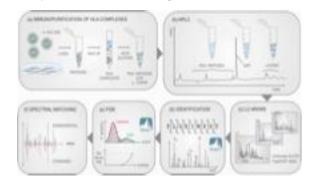


Mapping conformational epitopes is complex and requires structural data



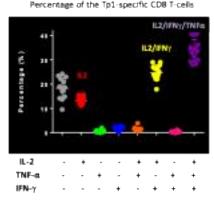
Multiple approaches for Th and CTL epitope discovery

Flowchart of antigen discovery



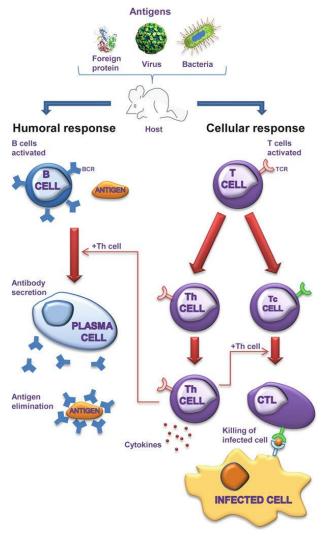
NetMHCpan, an artificial neural network

Proteomics of BoLA class-I associated peptides


Nicola Ternettis, Target Discovery Institute Mass Spectrometry Laboratory, U. of Oxford Tim Connelley, The Rosin Institute, U. of Edinburgh

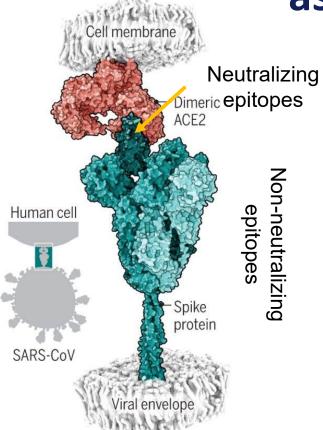
Thirty new antigens - need to be validated

Antigen-specific poly-functional CD8 T cells



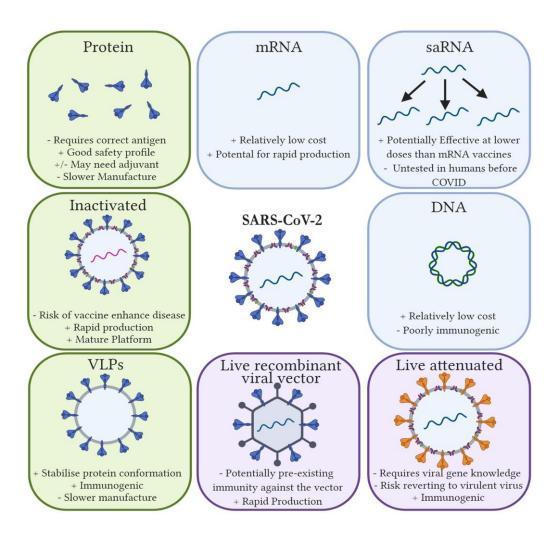
Can assay in context of 16 different BoLA class I alleles

Lucillo Steinaa & Nick Svitek


Role of acquired immune responses in vaccine R&D

- > In vitro assays that correlate with immunity:
 - Prevent infection of cells
 - Kill infected cells
- > Shift from antigen to epitope-specific responses
- > Trend to epitope focused-vaccine R&D
 - What are these?

Antigens contain many epitopes, only some are associated with immunity



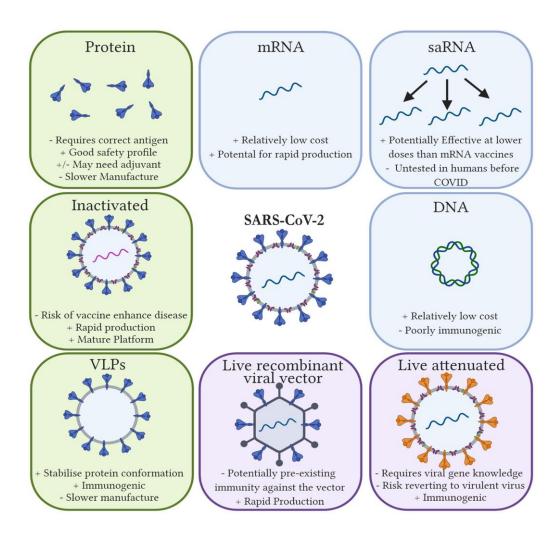
- > Antibodies directed to many epitopes on an antigen
- Some antibodies prevent virus entry (neutralizing Abs)
- Quality of antibody responses induced by a vaccine is critical as neutralizing and non-neutralizing Abs are induced
- > Focus vaccine response to protective (neutralizing) epitopes
 - Some epitopes (B- and T-cell level) could exacerbate disease
- Knowing the structure of antigens and functional significance of epitopes can help design better vaccines

Spike protein contains many epitopes

Impact of platform technology on veterinary vaccines

Examples of vet vaccines with all these platforms, but most are inactivated or live attenuated

Many platforms require adjuvants or perform better; innovations with molecular adjuvants


Antibody responses via VLPs tend to be better than soluble antigen

Best CTL responses via nucleic acid delivery

mRNA is a highly versatile R&D and vaccine delivery platform

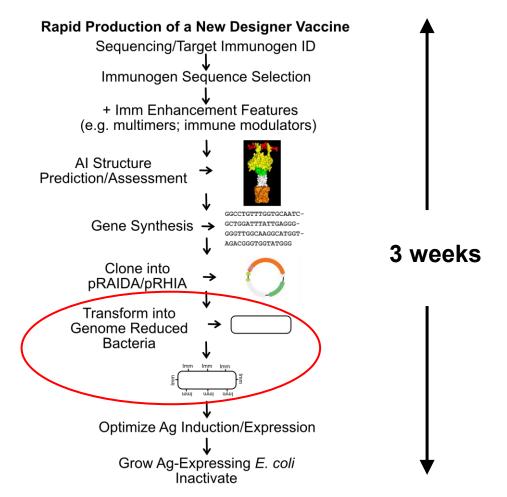
Impact of platform technology on veterinary vaccines

New generation "designer" livestock vaccines requires candidate vaccine antigens

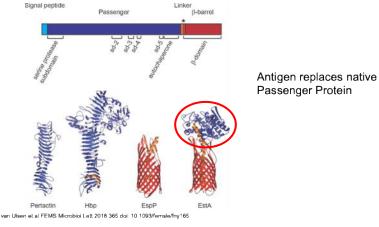
R&D with a target product profile in mind

Forward and reverse methods to identify candidate vaccine antigens in vaccinology

Driven by functional immuno-assays, especially for combination vaccines and meeting the "3Rs"

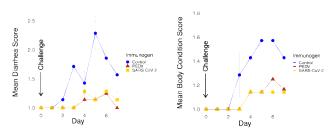

Immunotherapy vaccines - immunity via passive transfer of antibody

Could antibody banks support vaccine banks?



A novel killed whole cell surface-expressed bacterial platform

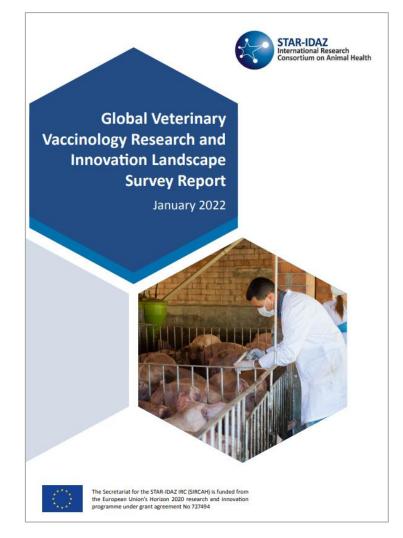
Steven Zeichner



Antigen coding sequence replaces native Passenger Protein coding sequence

Pig Clinical Responses - Clinical Proof of Principle

Either the SARS-CoV-2 FP vaccine OR the PEDV FP vaccine protect the pigs against clinical disease. The vaccines are cross-protective, indicating the possibility of a universal corporative vaccine.



After challenge, pigs were monitored daily for clinical symptom of PEDV infection. About two days post-challenge (dpc), pigs in control group showed clinical symptom. In totally, 6 pigs in control group showed symptom of PEDV infection. In two vaccine groups, only 1-2 pigs shower

- Body condition scores (1-3). 1, undetectable spinous processes and hook bones. 2, spinou processes and hook bones were slightly felt. 3, spinous processes and hook bones were easily felt and visible.
- Diarrhea scores (1-3). 1, normal to pasty feces. 2, semi-liquid diarrhea with some solid conte 3, liquid diarrhea with no solid content

Maeda, et al. 2021. "Killed Whole-Genome Reduced-Bacteria Surface-Expressed Coronavirus Fusion Peptide Vaccines Protect against Disease in a Porcine Model." *Proceedings of the National Academy of Sciences of the United States of America* 118 (18). https://doi.org/10.1073/pnas.2025622118.

Key conclusions:

- Sustainable and open access to immunological tools and associated databases.
- Partnership with industry, is key
- Developing and validating:
 - new immunological methods and technologies that enable research in the natural host and/or the best model species
 - in vitro tools combined with bioinformatics for testing vaccine antigen efficacy and selection
 - models to reduce, replace and refine the use of animals in research (3Rs)
 - knockout models to decipher different types of immune response
- Discovering and validating adjuvants that generate an optimal immune response in veterinary species (58% very important).
- Incorporation of in silico tools including bioinformatics with wet lab to assist in the development of tools for veterinary vaccine research

The antibody hub at The Pirbright Institute

New tools have given us the opportunity to utilise these detailed antibody responses to make the next generation of vaccines and therapies. Prof. John Hammond

This highly collaborative work will address the needs of the livestock research community whilst bridging the requirements of the vaccine industry. A number of work programmes will focus on studying B cells and antibodies at multiple scales including gene expression, single cell function and the entire antibody response.

Control livestock infectious diseases in LMIC

- Act as a central resource to drive antibody research in livestock
- ✓ Secure our food supply
- Improve animal health and ultimately human health
- ✓ Refine models of human disease to test vaccines

The Pirbright Institute

- Leader in the study of livestock antibody responses
- Highly collaborative centre of livestock immune research
- Facilities that enable the study of high-consequence pathogens in their natural livestock hosts

Cattle, pig, sheep, goat and chicken

Antibody discovery, manipulation and testing in livestock

- ✓ B-cell subset and antigen specific isolation protocols
- ✓ Single B-cell antibody sequencing and characterisation
- ✓ Engineering of antibodies with alternative functions
- ✓ Predict and measure in vivo antibody function
- ✓ Antibody repertoire analysis
- ✓ Open access to methods and analysis platforms
- ✓ Enable rational vaccine design

Home Our science v

Engage with us ~

Facilities and resources ~

Careers and learning ~

ws v A

About ~

Q

The Centre for Veterinary Vaccine Innovation and Manufacturing (CVIM) will support the development and deployment of vaccine technologies to combat neglected and emerging diseases of livestock, including zoonotic diseases that represent a threat to public health.

IVVN veterinary vaccinology landscape workshop

https://www.intvetvaccnet.co.uk

IVVN Landscape Workshop: Shaping the Future of Veterinary Vaccinology

The IVVN Landscape Workshop (3–4 September 2025) brought together global stakeholders in veterinary vaccinology to discuss key challenges and priorities for the field. Over two days of facilitated discussions, participants developed action plans to strengthen research, innovation, and collaboration across the community. 18 Sep 2025

Thank you for your attention