

Novel Nanoparticle therapeutics as alternatives to antibiotics to control *Escherichia coli* bacterial infection in ruminants in Ethiopia:

A Strategic Alternative to Antibiotics

Takele A. Tefera (PhD),
Director, National Veterinary Institute (NVI),
ETHIOPIA

Research Team

Gireesh Rajashekara (PI), University of Illinois, USA Takele Tefera (Co-PI), NVI Zelalem Mekuria (Co-PI), Ohio State University

CONTENTS

1. Introduction

2. Project Background

- Major Constraints and threats of AMR in Ethiopian Dairy Sector
- ➤ Limitations of Current Treatment interventions

3. Objectives

4. Results

- Nano particle synthesis and characterization
 - In vitro analysis of small molecules and peptides
 - Evaluation of GI-7a for growth inhibition in pig and human ETEC isolates
 - Assessment of growth inhibition by P1 and P2 peptides on ETEC

- Chitosan mannose nanoparticle characteristics
- Lyophilization & Cryoprotectant analysis
- Temperature stability Assessment of nanoparticles
- Safety and efficacy evaluation of Nanoparticle therapeutics in Animal experiments at NVI, Ethiopia
- 6. Future Plans
- 7. Strategic Impact of the Project



1. Introduction

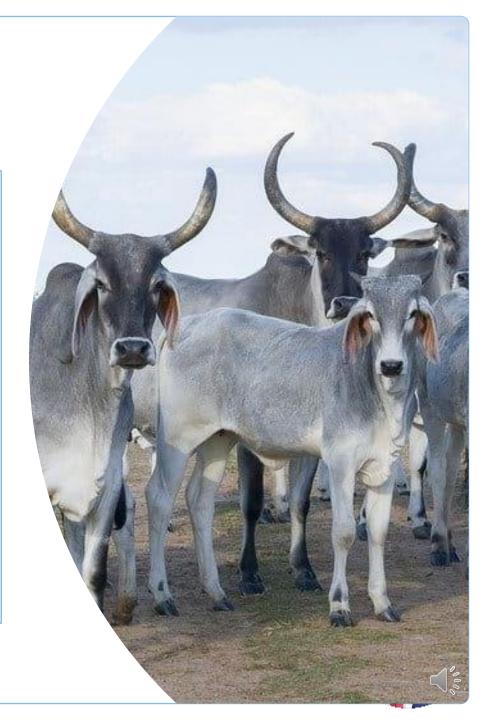
- AMR:
 - Global concern: WHO designates AMR as one of the top 10 global health threats
 - Ethiopia's context: High burden of infectious diseases, limited surveillance, and antibiotic misuse

AMR Landscape in Ethiopia

- Rising resistance in livestock and human pathogens (e.g., *E. coli, Salmonella, Staphylococcus*)
- Drivers of AMR:
 - Overuse/misuse of antibiotics in veterinary and human medicine
 - Lack of regulatory enforcement
 - Informal drug markets and self-medication
 - Surveillance and Data Gaps (Limited national AMR surveillance systems, Fragmented reporting across sectors, Need for One Health integration)
- Consequences:
 - Treatment failures
 - Economic losses in agriculture
 - Threat to food safety and public health

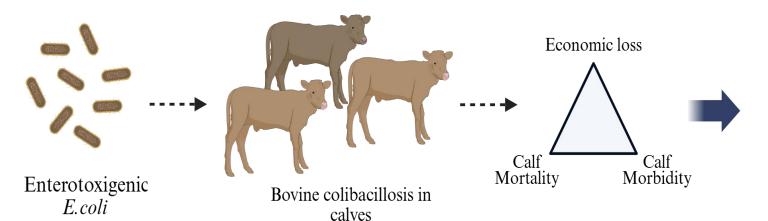
AMR Mitigation Strategies

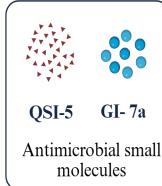
- **Vaccines**
- **Rational Use of Antibiotics**
- **Antimicrobial Alternatives** (Probiotics, prebiotics, and phytogenics in livestock feed, Bacteriophage, Immunomodulators)
- **Public Awareness**

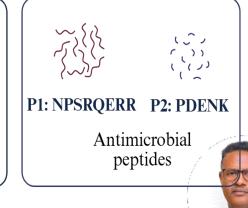


2. Project Background

- Major Constraints and threats of AMR in Ethiopian Dairy Sector:
 - Ethiopia has Africa's largest cattle population; dairy is rapidly growing.
 - Calf mortality (14.8%) and mastitis are leading production challenges
 - There is high ETEC Burden in young calves and AMR Threat
 - About 32% of diarrheagenic E. coli in calves are ETEC.
 - E. coli acts as a reservoir for AMR genes
 - 90% of isolates show multidrug resistance to ≥3 antibiotic classes

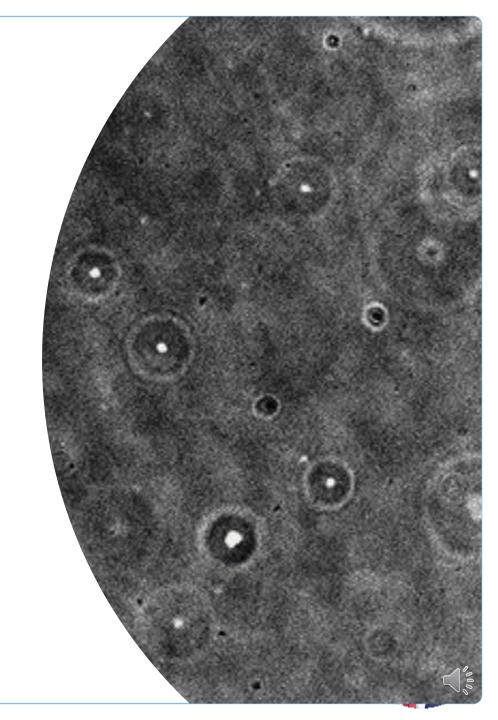






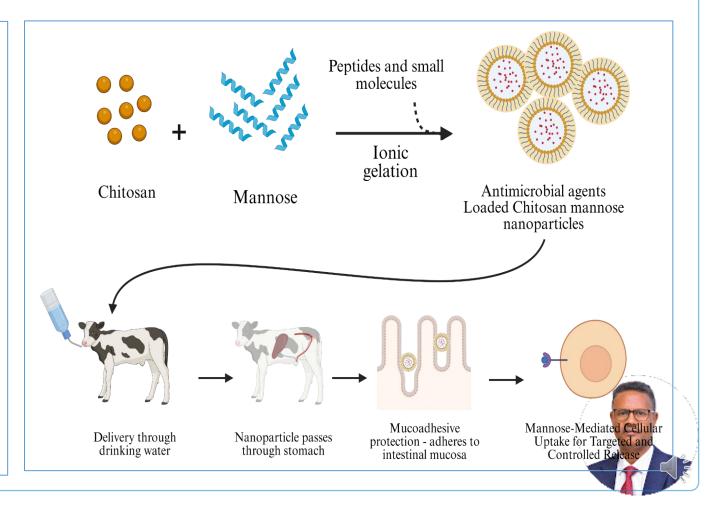
Limitations of Current Treatments

- High resistance rates to common antibiotics used:
 - tetracycline (63.8%),
 - ampicillin (55.8%),
 - sulfamethoxazole + trimethoprim (75%).
- No effective vaccines exist due to strain diversity
- Antimicrobial small molecules (QSI-5 & GI-7) and antimicrobial peptides (P1 & P2) could be alternative solutions in treat antibiotic resistant bacteria



WHY ANTIMICROBIAL SMALL MOLECULES AND PEPTIDES?

- QSI-5 disrupts bacterial communication via quorum sensing inhibition
- GI-7a compromises bacterial membrane integrity
- Peptides P1 & P2 target membrane proteins and gene expression



CHITOSAN - MANNOSE NPs: EMERGING AS AN EFFECTIVE ORAL DELIVERY PLATFORM

- Biocompatible, biodegradable, and mucoadhesive polymer NPs, ideal for oral delivery, are efficiently taken up by intestinal M cells and dendritic cells.
- Mannose-functionalized chitosan NPs enhance targeted uptake and are promising carriers for small molecule inhibitors and antimicrobial peptides (AMPs) to treat calf diarrhea.

3. Project Objectives

Objective 1 Synthesis and Characterization

(University of Illinois, Urbana Champaign, UIUC)

Synthesis & development of NPs

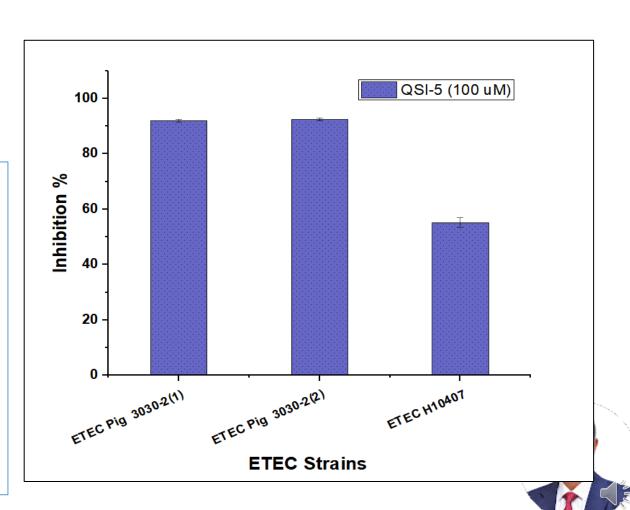
- Analysis part (NMR, IR, MS, Size, zeta potential, UV, XRD, SEM)
- Drug stability

Objective 2

Safety & efficacy evaluation (Animal Experiment)

(National Veterinary Institute, NVI)

- ETEC Challenge dose optimization in calves
- Drug dose optimization in calves
- POC experiment in calves to evaluate the Efficacy, safety, and applicability of leadmicrobial (Drug loaded NPs)
- PK and PD studies

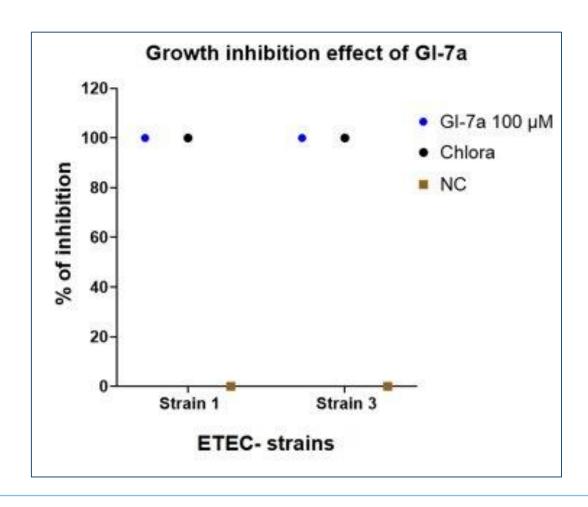


4. Results

IN VITRO ANALYSIS OF SMALL MOLECULES AND PEPTIDES

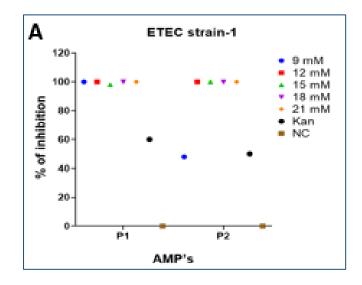
QSI-5 Suppresses AI-2 signaling in pig and human ETEC

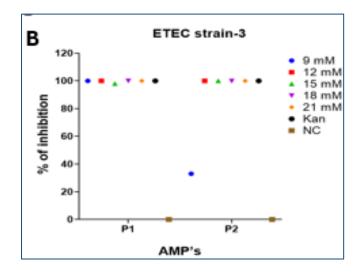
- QS-5 demonstrated significant inhibition of Al-2 up to 92% in both Pig ETEC strains [ETEC Pig 3030-2, ETEC Pig 3030-2
- A moderate inhibition of 52% was observed in the ETEC Human-10407 strain.



EVALUATION OF GI-7a FOR GROWTH INHIBITION IN PIG AND HUMAN ETEC ISOLATES

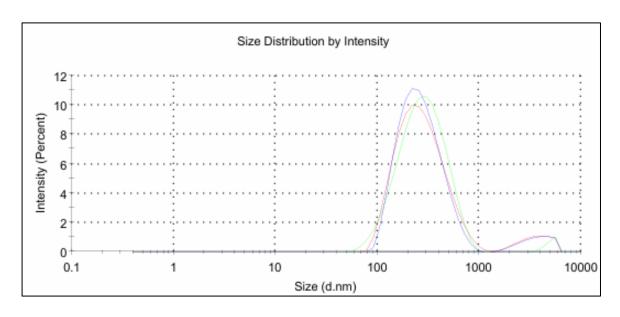
- The graph shows the growth inhibition of ETEC strains treated with GI-7a (100 μM), compared to chloramphenicol (20 μg/ml) as a positive control and 1% DMSO as a negative control.
- Both GI-7a and chloramphenicol achieved nearly 100% inhibition in pig (strain 1) and human (strain 3) isolates, while the negative control showed no activity.





ASSESSMENT OF GROWTH INHIBITION BY P1 AND P2 PEPTIDES ON ETEC

Peptides P1 and P2 were tested at concentrations of 9 mM, 12 mM, 15 mM, 18 mM, and 21 mM for the treatment.
 Bacteria grown in 1% DMSO (Negative control; NC), kanamycin-50 μg/mL (Kan) were used as controls.



CHARACTERISTICS OF CHITOSAN MANNOSE NANOPARTICLE

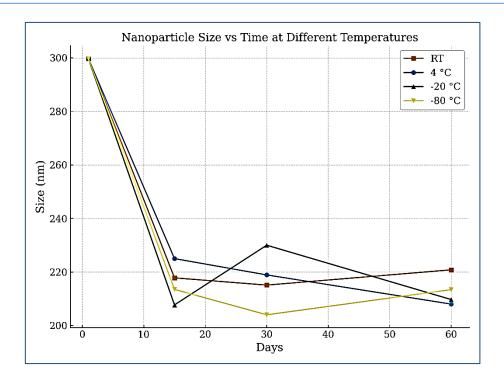
Nanoparticle Size Distribution Graph

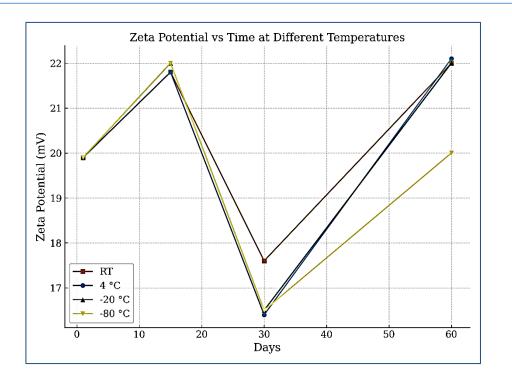
Nanoparticle	Size (nm)	Polydispersity Index	Zeta Potential
QS-5	285.9	0.3	+30
P1	198.6	0.259	+33.8
P2	271	0.358	+37

LYOPHILIZATION AND CRYOPROTECTANT ANALYSIS

- > Nanoparticles in liquid form can aggregate or degrade over time.
- > Lyophilization (freeze-drying) removes water under low pressure after freezing at -50 °C.
- Cryoprotectants like sucrose are added to prevent structural damage during freezing and drying.
- > Cryoprotectants enhance the stability of nanoparticles during lyophilization.

Nanoparticle sample	Size (nm)	Zeta potential	Inference
Before lyophilization	308.3	+ 24.2	Stable with accurate size
1% sucrose	298.4	+ 19.3	No changes and Ideal
5% sucrose	299.7	+ 19.9	No changes
10% sucrose	283.8	+ 16.5	No changes
Without cryoprotectant	150,000	+ 17.1	Size increased





TEMPERATURE STABILITY ASSESSMENT OF NANO PARTICLES

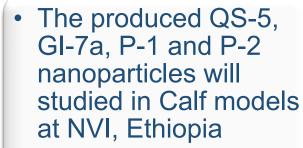
- QSI-5 nanoparticles (lyophilized with sucrose) were stored at RT, 4 °C, −20 °C, and −80 °C for 60 days and were assessed for stability.
- Particle size remained stable (204–300 nm). Zeta potential showed minimal change (+16.4 to +19.9 mV).

No substantial impact of storage temperature on nanoparticle stability over 60 days



Safety and efficacy evaluation of Nano-particle therapeutics in Animal experiments at NVI, Ethiopia

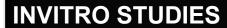
- Preparation of challenge ETEC strains
 - > ETEC strains isolated from cases of calf diarrhoea
 - Identification and characterization of ETEC strains done (phenotypic and molecular)
 - Nalidixic resistant challenge ETEC strain generated
- Challenge dose optimization experiment is underway



6. Future plans

- Encapsulation efficiency
- Loading capacity
- Temperature & pH stability
- In vitro release study and kinetics

Nanoparticle required for dose optimization studies in animal models will be prepared and shipped to Ethiopia


BULK **NANOPARTICLE PRODUCTION**

- Optimum dose determination
- POC experiment to evaluate the safety & efficacy of drug loaded NPs

CALF MODEL TRIALS

7. Strategic Impact of the project

- Supports Ethiopia's One Health goals
- Strengthens dairy sector resilience
- Provides scalable platform for broader bacterial disease control in LMICs

ACKNOWLEDGEMENT

Funding

Global AMR Innovation Fund

Research Team

