

Vaccines and their importance in animal disease control and as alternative to antimicrobial

Gelagay Ayelet and Dr Charles Bodjo

Overview of the Presentation

- **□** AU-PANVAC'S mission
- ☐ Trend of Vaccines Tested at AU-PANVAC
- Impacts of Antimicrobial-resistant (AMR)
- ☐ Factors aggravating AMRS
- ☐ The role of animal farming in AMR
- ☐ Significance of vaccines in reducing antibiotic use
- ☐ The role of vaccines in Combatting AMR
- ☐ Conclusion

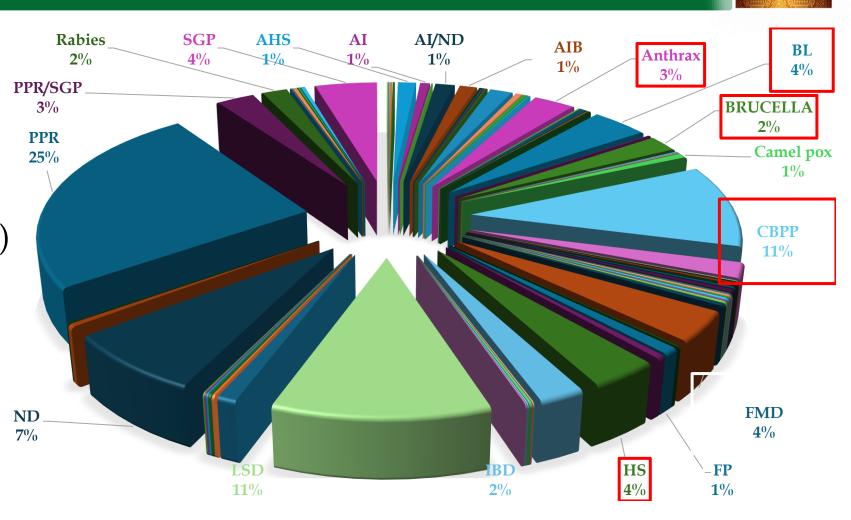
AU-PANVAC's Mission

"To promote the use of **GOOD QUALITY VACCINES** and **DIAGNOSTIC REAGENTS** for the control, eradication and surveillance of animal diseases in Africa."

Trend of Vaccines Tested at AU-PANVAC

☐ Currently AU-PANVAC Certifies annually:

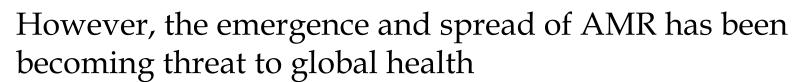
- More than 50 types of Vaccines
- 300 400 batches annually (≈ 3.5 Billion doses)
- For all Animal Species (except Fish)

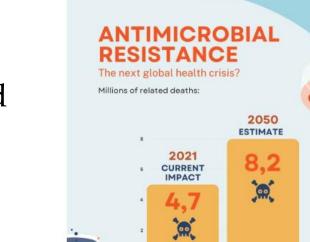


Vaccines Received for QC: 2020-2024

Bacterial

- Anthrax, BL, CBPP, CCPP, FT, FC, HS, Brucella,
- Parasites (ECF, coccidiosis)
- Viral (PPR, LSD,SGP..)





Impacts of Antimicrobial-resistant (AMR)

The use of antibiotics has enabled the successful treatment of bacterial infections, saving the lives and improving the health of many patients worldwide.

The study finding showed in 2021 estimated of death of 4.7 m people related with AMR and will reach 8.2m by 2050, unless appropriate measures are taken (*Lacet vol 404 September 28, 2024*)

A continuous increase in the Global human population puts immense pressure on food resources. Higher Demand for Animal Protein (meat, milk, and eggs)

➤ Increase Intensive Farming Systems (crowding, stress, and uniform genetics)

➤ Leads to a greater disease incidence in Animals

Increases use of AMs (treatment, prevention, and growth promotion)

Other factors such as:

- climate change,
- Globalization (increase mobility, both human, and animals and animal products)

Aggravating the disease incidence

1. Over use

- >73% of AMs sold globally are used in animals
- In USA, $\approx 70\%$ AMs, which are used to treat human infections are sold for use in food animals

In Africa, there are also various factors which aggravate AMR

2. Misuse of AMs, Animal owners can purchase

AMs without prescription and inject by

themselves, under dose)

3. Inefficient drug quality control regulation, poor

quality drugs are imported to Africa

• Leading to rise in Antimicrobial Resistance

The role of animal farming in AMR

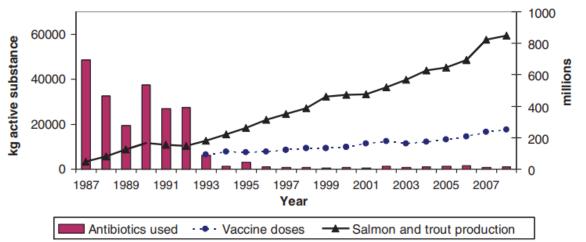
- Farm animals are playing a key role to the development and spread of AMR genes/bacteria.
- Contaminate human through the environment, food products and by direct contact
- ➤ AMR is becoming a significant global health concern, Needs ONE HEALTH APPROACH

Significance of vaccines in reducing antibiotic use

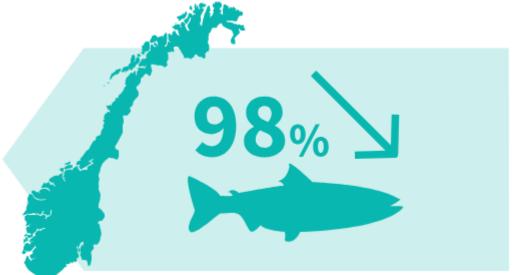
Significance of vaccines in reducing antibiotic use

Poultry Vaccines with % Reduction in Antibiotic Use

Disease	Causative Agent	Reduction in Antibiotic Use	Study Area/ Country	Reference / Source
Colibacillosis	E. coli (APEC)	Up to 50%	Israel, USA	Peighambari et al., Avian Dis, 2000; Landman & van Eck, Avian Pathol, 2015
Necrotic Enteritis	Cl. perfringens	Up to 60%	USA	Hofacre et al., Avian Dis, 2018
Fowl Cholera	P.multocida	40–50%	USA	Schultze et al., Avian Dis, 2013
Infectious Coryza	A. paragallinarum	35–45%	Brazil	Ferreira et al., Pesq Vet Bras, 2017
Mycoplasmosis (CRD)	M.gallisepticum	30–50%	USA, Israel	Ley, Avian Pathol, 2003
Salmonellosis	S. Enteritidis	30-50%	EU	EFSA, 2021



AU-PANVAC


Significance of vaccines in reducing antibiotic use...

Impact of vaccines on antibiotic use in fish

- Norway is known for Aquaculture,
- ➤ Antibiotic consumption was high in 1980-90s
- Reduced antibiotic use through vaccination

➤ Currently, Antibiotic use fell ≈98% following the introduction of an effective vaccine against a key bacterial diseases

Significance of vaccines in reducing antibiotic use..

Swine Vaccines with % Reduction in Antibiotic Use

Disease	Causative Agent	Reduction in Antibiotic Use	Study Area/ Country	Reference / Source
Neonatal Diarrhea	E. coli (Enterotoxigenic)	Up to 74%	China	Zhang et al., Vet Microbiol, 2021
Ileitis	Lawsonia intracellularis	Up to 80%	USA	Zoetis Field Study, 2020
Enzootic Pneumonia	M.hyopneumoniae	30-40%	Belgium	Maes et al., Vet Rec, 2018
Salmonellosis	S. Typhimurium	30-50%	Germany	Wallmann et al., J Anim Sci, 2013
Pleuropneumonia	Actinobacillus pleuropneumoniae	40–50%	Australia	Pointon et al., Anim Prod Sci, 2010

Significance of vaccines in reducing antibiotic use...

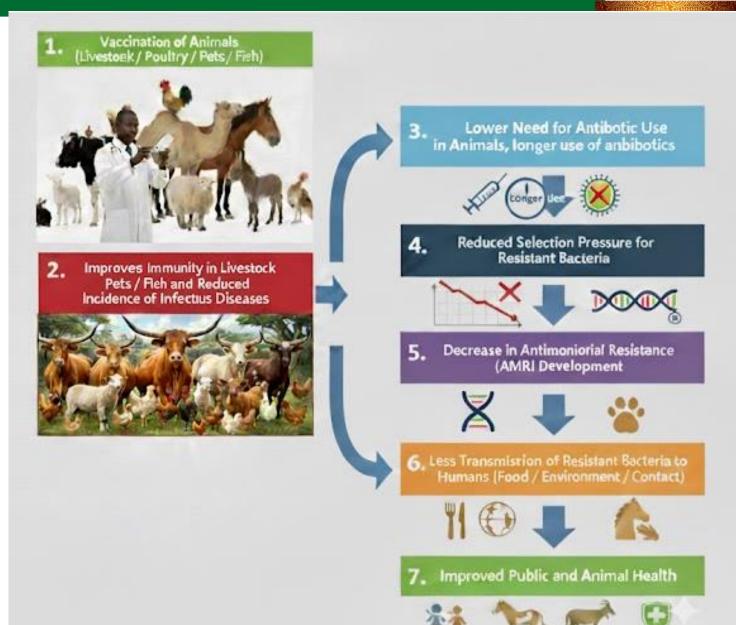
Impact of swine viral vaccines on antibiotic use in Pig

Porcine circovirus type 2 (PCV-2) causes generalised immuno-suppression in pig, predispose to secondary bacterial infections.

A study conducted on Austrian pigs found a 67% decline in antibiotic use on finishing farms when PCV-2 vaccines were used

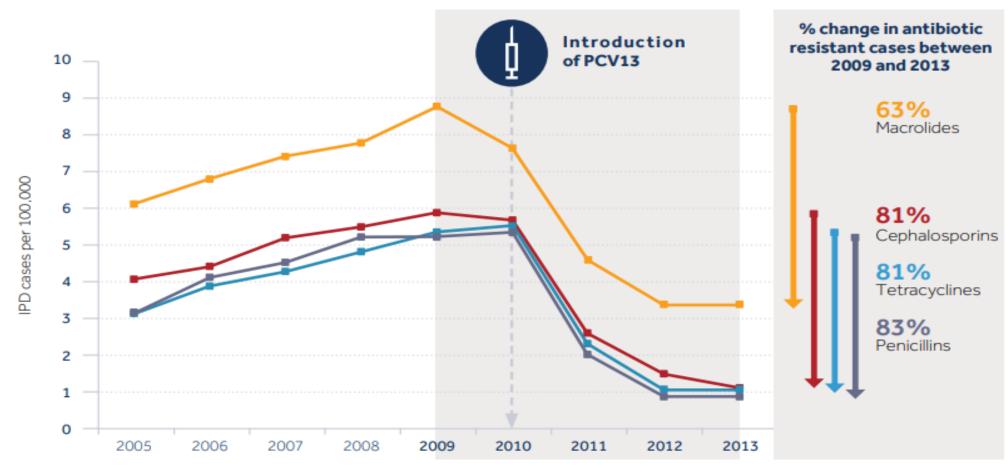
Significance of vaccines in reducing antibiotic use...

Livestock Vaccines with % Reduction in Antibiotic Use


	Disease	Causative Agent	Species	Reduction in Antibiotic Use	Study Area/ Country	Reference / Source
	Respiratory Disease (BRD)	Multibacterial/v iral (e.g. M. haemolytica, IBR virus)		60–70%	USA	Taylor et al., J Anim Sci, 2020
]	Infectious Bovine Rhinotracheitis (IBR)	Bovine Herpesvirus-1 (BoHV-1)	Cattle	50%+	Canada	Van Donkersgoed et al., Can Vet J, 2005
ŀ	bovine Mastitis	1 2	Dairy Cows	30%	Netherlands	Schukken et al., J Dairy Sci, 2011
	KPP	M.mycoides subsp. mycoides	Cattle	Reduced mass treatment	Africa	AU-IBAR, OIE Reports
	CCPP	MCCP	Goats	Reduced mass treatment	East Africa	FAO, 2019; OIE Tech Card

The role of vaccines in Combatting AMR

Impact of veterinary vaccines on combatting AMR:
A schematic pathway



Impact of vaccines on AMR...

Impact of pneumococcal vaccine on rates of drug-resistant invasive pneumococcal disease (IPD) in USA

IPD: invasive pneumococcal disease; PCV: pneumococcal conjugate vaccine

AU-PANVAC

Conclusions

- ➤ AMR is a growing global health concern, and the extensive use of antibiotics in animal production is a major contributing factor, needs ONE HEALTH APPROACH.
- \triangleright Vaccination is not just an alternative it is a frontline defense in addressing AMR.
 - ✓ By preventing infectious diseases in animals, vaccines drastically reduce the need for antibiotics and, in turn, limit the emergence and spread of AMR.
 - ✓ Evidence across multiple species has demonstrated that effective vaccination can lead to significant reductions in antibiotic use.
- ➤ AU-PANVAC plays a critical role in the effort to minimize antibiotic use (addressing AMR) through its rigorous quality control and certification of veterinary vaccines, ensuring their safety and effectiveness across the continent.

One Continent, One Market, One Standard for Registration of Vaccines & manufacturers

WWW.AUPANVAC.ORG

