

Case Study: Development of COMMI Nanoformulation from Commiphora Plant Resins for Innovative Mastitis Treatment

Gaymary George Bakari

Christian Nkanga & Xin Zhao

Introduction

Antimicrobial Resistance is a Global One Health threat, with Africa heavily affected.

Introduction

Livestock sector contributes via

- Overuse and misuse of antibiotics.
- Inadequate dosing or duration.
- Poor infection control practices.
- Lack of regulation or enforcement.
- Use of antibiotics as growth promoters.

Introduction

Developing a nanotechnology-based Herbal alternative such as Comminano Teat Infusion with antibacterial properties to reduce dependence on traditional antibiotics.

Advantages of encapsulating the resin with nano particles

Improves solubility and bioavailability of resin compounds.

Fnables controlled and targeted delivery to infected udder tissue.

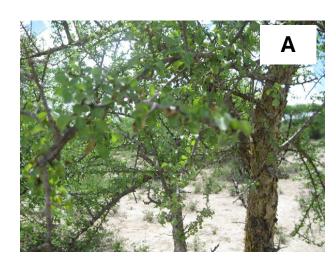
Potentially stable at room temperature, easing logistics in rural Africa.

Fnables controlled and targeted delivery to infected udder tissue.

Why Commiphora Resins?

2009-2022

Awardee of AFNET (PhD) and AESA RISE postdoc fellowship (AAS) to Formulate, validate and promote products from Commiphora swynnertonii resin for veterinary and medical uses



Commiphora swynnertonii, a family Burseraceae

• Distributed in Africa and Asia and is among the plant Treatment of wounds, gastric ulcers, arthritis, Antimicrobial, anticoccidial and anti-inflammatory conditions (Bakari et al 2011-2022.,)

C. swynnertonii plant

Stem part showing resin oozing out of the tree

Raw resin

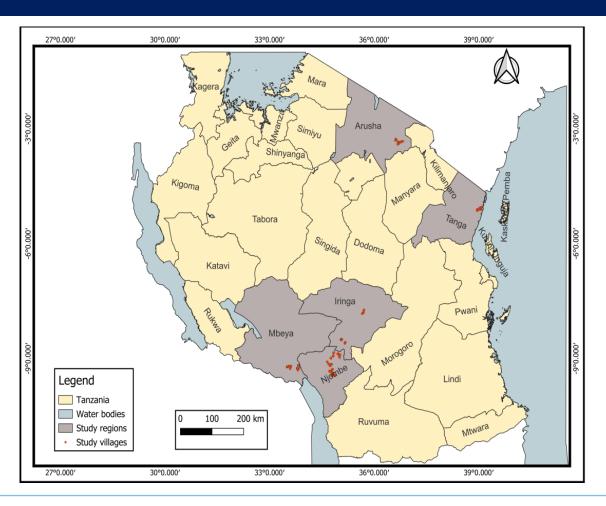
CommiCare

Development of Comminano Fractions for treat mastitis (IDRC through Inno Vet 2-AMR project).

Prevalence of mastitis and AMR in Tanzania

Preliminary Survey on KAP of Mastitis and AMR.

- The study was conducted in five regions of Tanzania:
 - Arusha, Tanga, Njombe Iringa and Mbeya
- Involved 665 respondents (105 from each regions).
- 3,858 milk sample collected from different farms
- Training to 665 farmers on mastitis prevention, AMR, good manufacturing practice of milk and milk products and records keeping.



Tanzania map showing study regions

Face to face **Interview** To farmers.

Focus Group Discussion.

Sample **Collection And CMT Testing**

Provision of Result feedback & training to **Farmers**

Analysis of sample Collected for Mastitis & AMR.

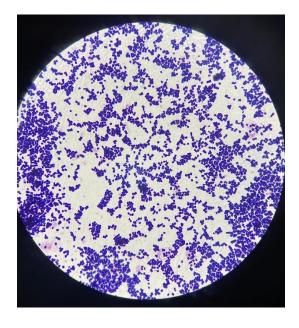
1. Prevalence of subclinical mastitis (CMT Test)

- Total animals sampled: 975
- Milk samples collected: 3,858 (from active quarters)
- Samples were collected aseptically using CMT paddles
- CMT Results:
 - Positive for mastitis: 1,425 quarters (36.94%) and Negative: 2,433 quarters (63.06%)
- Mastitis prevalence (based on CMT screening): 36.9%

Testing of milk
Using CMT
For subclinical Mastitis.

2. Bacteria culture and Isolation.

- Total animals sampled: 975
- Milk samples collected: 3,858 (from active quarters)
- A total of 400 Staphylococcus spp and 100 Coliform isolated from by using culture method (12.9%)
- Out of 400 Staphylococcus spp 182 were confirmed Staphylococcus aureus
- Out of 100 Coliforms, 8 were Escherichia coli.

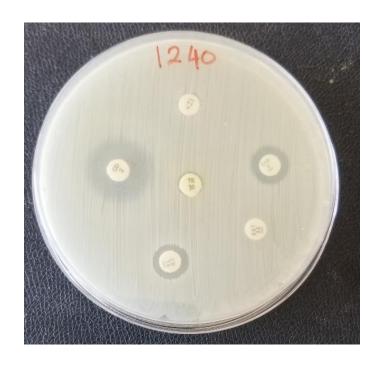


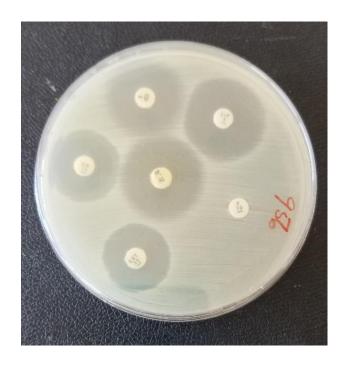

Isolation of Staphylococcus aureus

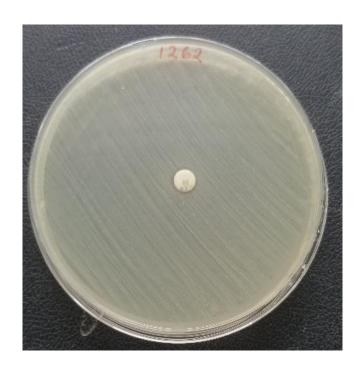
Isolation of Staphylococcus spp on Mannitol salt agar

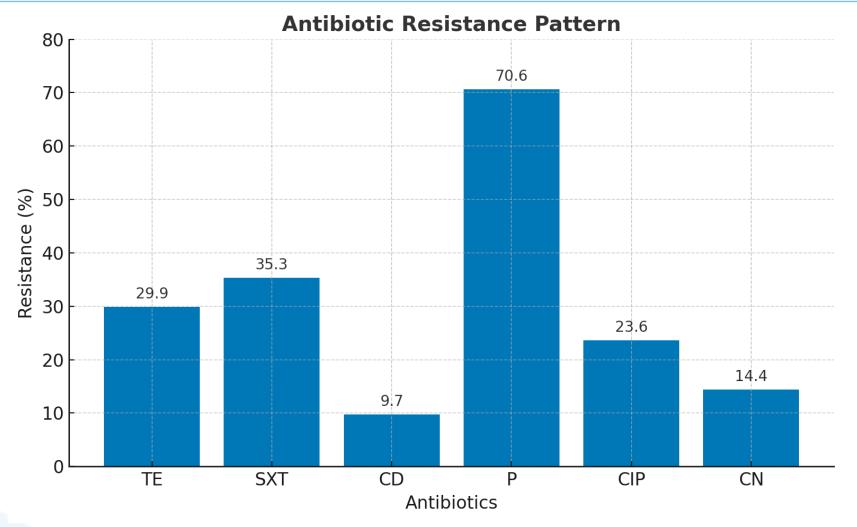
Confirmation by Gram Stain slide showing Staphylococcus spp

Coagulase test differentiate Staphylococcus aureus using Staphrex reagent






3. Antimicrobial susceptibility test


MDRS showing Inhibition Zone.

AST showing Inhibition Zone.

MRSA using Cefoxitin.

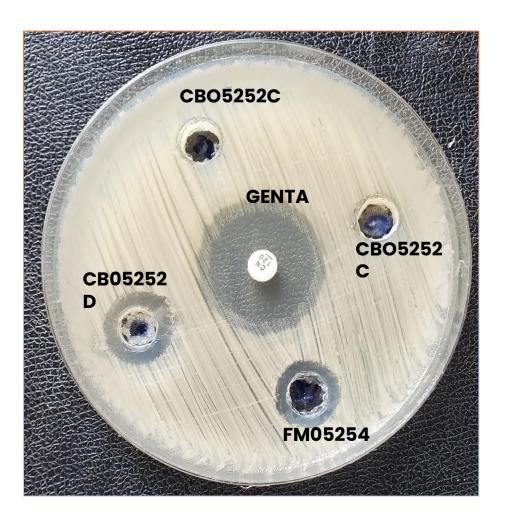
Penicillin (P)
with the highest
resistance
(70.6%) and
Clindamycin
(CD) with the
lowest (9.7%).

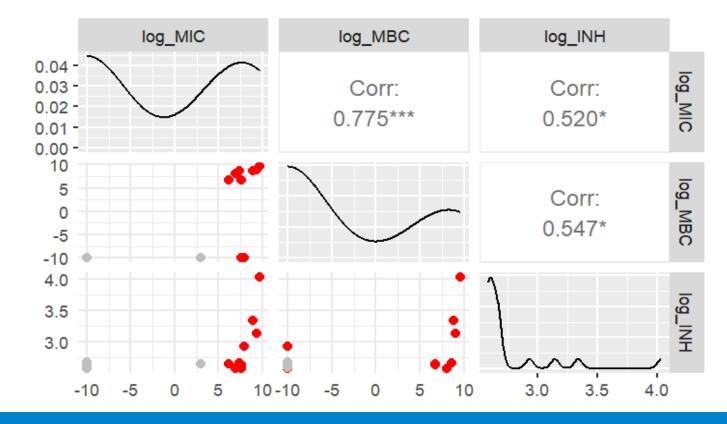
Figure 2: Percentage of antimicrobial resistance among bacterial isolates obtained from milk samples.

4. PCR amplification of Staphylococcus spps 16S rRNA gene

Figure: PCR amplification of Staphylococcus species 16S rRNA gene. M is a 100bp marker and lanes 19 to 34 are representatives of positive samples, NC is negative control and PC is Positive Control.

Validation of Commi nano Fractions in vitro particles Tested on bacterial culture.





Antimicrobial Sensitivity and Potency Activity of 20 Drugs Against S. aureus

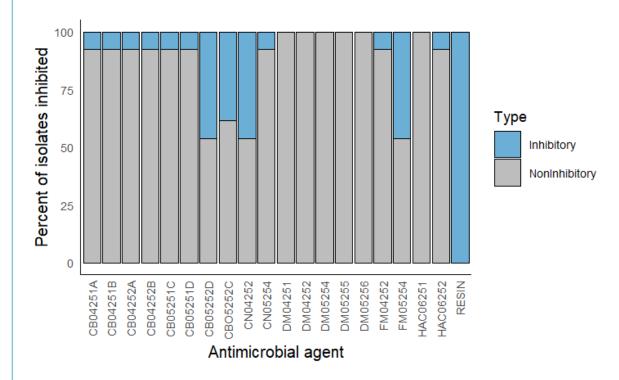


Fig 1: Bar graph showing the proportion of IHZ values >6 across antimicrobials, with Resin exhibiting the highest frequency against S.aureus

Key Findings – Frequency of Inhibition results

- FM05254, CB05252D, CN04252 each inhibited 46.2% of isolates.
- CBO5252C inhibited 38.5%, while several others showed only 7.7% inhibition.
- DM04251, DM04252, DM05254– DM05256, HAC06251 showed no inhibition.

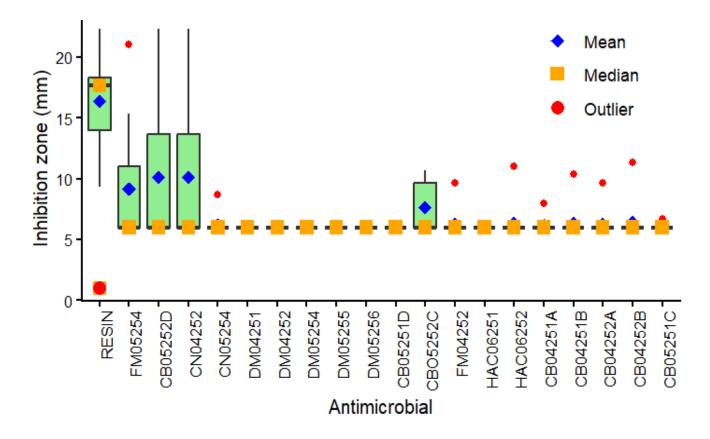


Fig 2: Box plots showing distribution of IHZ values across antimicrobials, with Resin exhibiting the highest IHZ against S. aureus

Key Findings – Descriptive/ Distribution of INH zone values

[CB05252D=CN04252,]>
FM05254>CB05252C showed inhibition

Resin vs CN04252 Resin vs CB05252D Resin vs CB05252D CB05252D vs CN04252 Resin vs CN04252 Resin vs CB05252D vs CN04252

Fig 3: Analysis of Variance (**ANOVA**) and multiple comparison test results showing significant differences in IHZ values across antimicrobials, with Resin exhibiting the highest and most consistent inhibitory effect against S. aureus.

Mean Difference (95% CI)

Key Findings – Comparative inhibition results

ANOVA showed significant variation among antimicrobial agents (P < 0.0001).

Resin differed most significantly from all others (mean diff. 6.26–10.36, P < 0.001).

Moderate differences observed among FM05254, CB05252D, CN04252, CN05254 (mean diff. 1.2–4.1).

Minimal or non-significant differences found within DM, CB, and HAC groups, indicating similar effects.

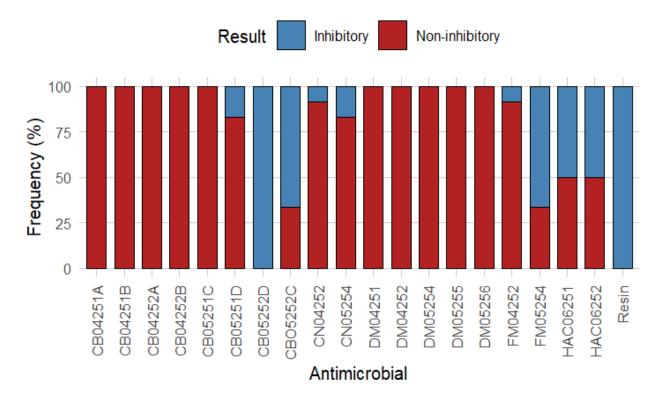


Fig 4: Bar graph showing the proportion of MIC values >0 across antimicrobials, with Resin & CB05252D exhibiting the highest frequencies against S.aureus

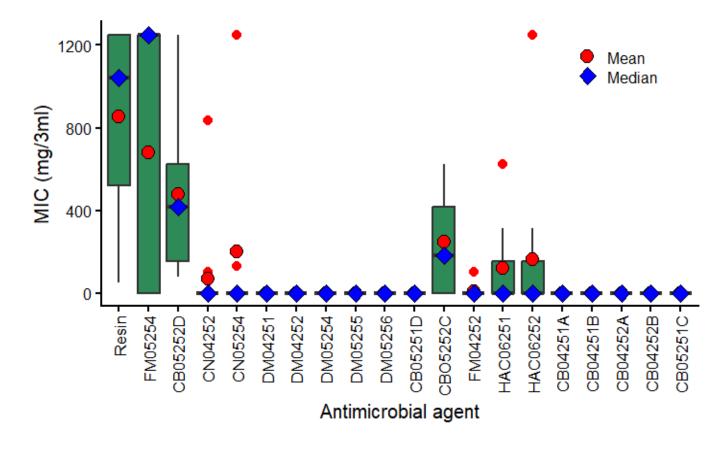
Key Findings – Frequency of MIC results

7 Nano resin fractions showed inhibitory effects

CB05252D>CB05252C> FM05254,>HAC06251>HAC06252

CB05251D, CN04252, CN05254 & FM04254: inhibited ≤23%

Others = None



Key Findings – MIC Distribution and Potency Against S. aureus

Most potent antimicrobials: HAC06251, &HAC06252- strong inhibition at very low MICs.

Fig 5: Box plots showing distribution of MIC>0 values across antimicrobials

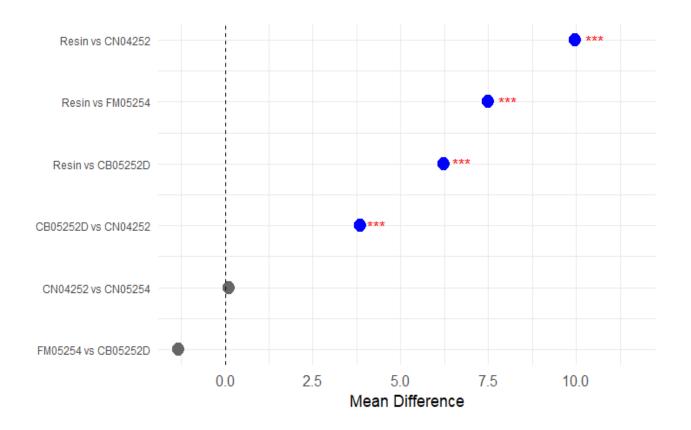


Fig 6: Analysis of Variance (ANOVA) and multiple comparison test results showing significant differences in MIC values across antimicrobials, with Resin driving the highest effect (and less potent)

Key Findings-ANOVA and Pairwise Comparison of MIC Values Across Antimicrobials

ANOVA: Significant variation among tested drugs (**P < 0.0001**)

Overall: CB05252D & CN04252 were different.

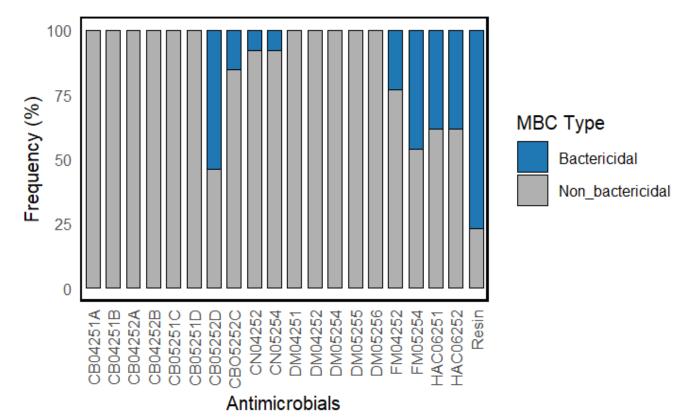


Fig 7: Bar graph showing the proportion of MBC values >0 across antimicrobials, with Resin & CB05252D exhibiting the highest frequencies against S.aureus

Key Findings-Bactericidal Activity of Antimicrobials Against S. aureus (MBC)

CB05252D and FM05254: – **54%** and **46%** respectively.

CBO5252C, CN04252, CN05254: minimal activity – 8% inhibition.

CB04251B, CB04252A/B, CB05251C/D, DM04251-DM05256: no bactericidal effect

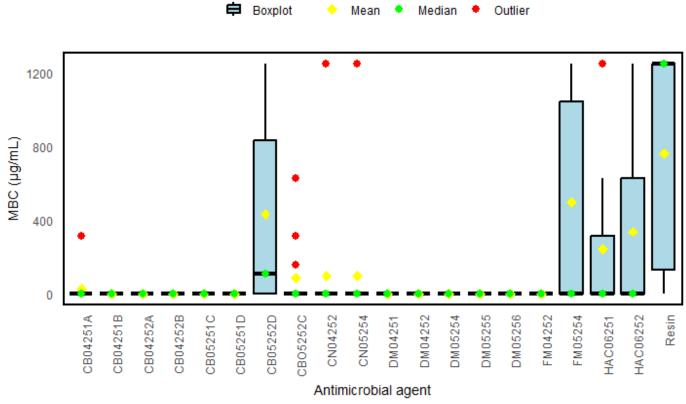


Fig 8: Box plots showing distribution of MBC values against S. aureus across antimicrobials,.

Key Findings – MIC Distribution and Potency Against *S. aureus*

Most potent antimicrobials: HAC06251, &HAC06252- strong inhibition at least low MBCs.

Least potent: Resin – highest mean MIC (763.2 mg/mL), indicating lowest inhibitory effect.

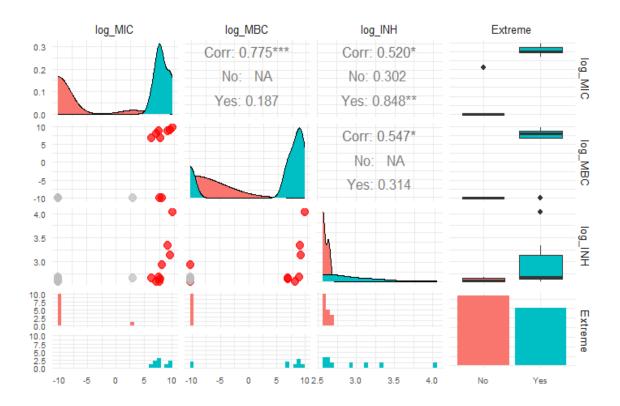


Fig 9: "Pairwise correlation of log2-transformed MIC, MBC, and INH values for 20 antimicrobials against 13 S. aureus isolates. Points in red indicate 'extreme' antimicrobials with the top 25% of values, representing drugs requiring higher concentrations to inhibit/kill and thus lower potency. MIC and MBC show strong positive correlation, while INH correlates moderately with both,

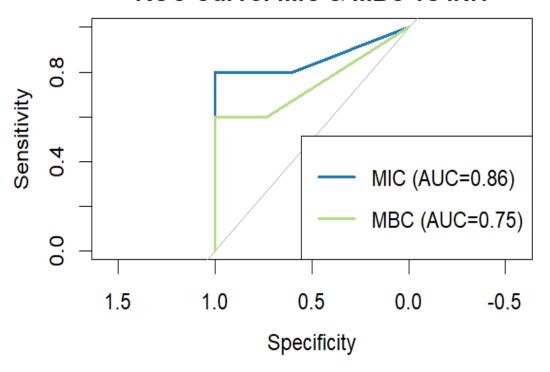
Key Findings – MIC Distribution and Potency Against *S. aureus*

Most antimicrobials clustered at low concentrations (gray points).

A few high-concentration drugs (red points) as extremes: Resin, FM05254, CB05252D, CN04252, CN05254, CB05251D, CB05252C, HAC06251, HAC06252

Strong correlation between MIC and MBC.

Moderate correlation of **INH** with the other two.



Key Findings-Antimicrobial Assay Performance

ROC Curve: MIC & MBC vs INH

Fig 10: Receiver operating characteristic (ROC) curves for MIC and MBC compared with INH as the reference standard. The MIC curve (blue) demonstrates higher discriminative ability (AUC = 0.86) than MBC (green, AUC = 0.75).

Proportion inhibited: INH = 60%, MIC = 50%, MBC = 35%.

ROC performance: MIC AUC = 0.86, MBC AUC = 0.75 – MIC better discriminates inhibitory isolates.

Kappa agreement with INH: MIC = 0.21 (fair), MBC = 0.17 (slight).

Takeaway: MIC shows better overall performance and alignment with the INH reference than MBC.

In vivo trials for validation of nano fractions using rat model.

Female pregnant and new born rats

Lactating rat showing teats

Acknowledgement

WOAH, IDRC, SUA, UNKIN and McGill
Prof. Christian Nkanga, UNIKIN
(christian.nkanga@unikin.ac.cd)
Prof Xin Zhao, McGill University Canada
(xin.zhao@mcgill.ca)

Any Question

THANK YOU