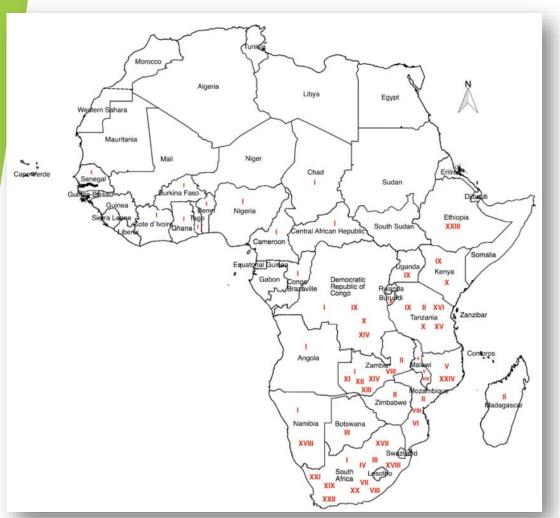


"ASF Virus and Challenges on Vaccines Development"

Dr Charles BODJO, Ag Director AU-PANVAC

Previous RSC, SGEs in Africa on ASF Vaccines & Vaccination:


- ☐ 2022 Regional Steering Committee (RSC) Meeting in Nairobi recommended that:
 - Member Countries be encouraged to ensure appropriate evaluation of any new ASF vaccine through AU-PANVAC before granting authorization for its use or distribution
- □ 2025 Regional Steering Committee (RSC) Meeting in Eswatini recommended:
 - ➤ To encourage Member(s) Countries/States to support and implement the Continental Strategy for the Control of *African swine fever* (ASF) as per the guidance and with the support of the SGE
 - ➤ To encourage Member(s) Countries/States to ensure appropriate evaluation of any new vaccine through AU-PANVAC, based on WOAH standards (currently not available for ASF) before granting any authorization for its use or distribution.

Genotypes Circulating in Sub-Saharan Africa

- ☐ ASFV strains are currently grouped into 24 genotypes (I to XXIV) with all the gene variants being associated with the disease
- ☐ Most of the Genotypes have been linked to ASF outbreaks in various parts of SSA, BUT Genotype I dominates in Central Africa and West Africa

Viruses 2021, 13, 2285. https://doi.org/10.3390/v13112285

Prototypes of ASF Vaccine Strains

Modified Live Vaccines (MLV) from Genotype II ASF Virus

- □ ASFV-G-ΔMGF: A highly attenuated strain developed from the highly virulent ASFV Georgia 2007 isolate by deleting multiple genes from the MGF regions
 - (Pathogens 2022, https://doi.org/10.3390/pathogens11090996)
- □ **ASFV-G-ΔI177L**: A modified-live strain derived from the same Georgia isolate, featuring a deletion in the I177L gene. This strain was later found to revert to virulence and is associated with adverse events in commercial vaccines. (*Viruses* 2022, https://doi.org/10.3390/v14050878)
- □ Lv17/WB/Rie1: A natural attenuated non-haemadsorbing genotype II ASFV. (Front Immunol. 2021, . https://doi.org/10.3389/fimmu.2021.761753)

Challenges for using ASF Vaccine Strains

☐ Field Strain Matching with prASF Vaccine

- ➤ Efficacy of the MLV ASF Vaccine is restricted to those strains that are antigenically related and, in most cases, only provide protection against homologous strains
- ➤ This is a critical bottleneck due to the large genetic and antigenic heterogeneity among all ASFV field isolate

Challenges for using ASF Vaccine Strains...

- ☐ Genetic change of vaccine (candidate ASFV-G- ΔMGF) with virus variants (NPJ vaccines, 2023. https://doi.org/10.1038/s41541-023-00669-z)
- ☐ Reversion to virulence:
 - ➤ ASFV-G-ΔI177L reverted to virulence during passaging in pigs, with severe ASF-specific clinical signs at passages 3 and 4, associated with increased viremia. (https://doi.org/10.1038/s41541-025-01099-9)
 - \triangleright The data show that ASFV-G- \triangle I177L is not genetically stable
- ☐ Possible recombination with wild strains
 - ➤ Whole Genome sequencing (WGS) as the most reliable method to detect recombination events

African Swine Fever (ASF) vaccines

- Adopted the first standards for the production of safe and effective vaccines against ASF
- ☐ Importance of using high-quality vaccines that comply with newly adopted standard
- ☐ Urges vaccine manufacturers and Members to consider these standards when developing and evaluating ASF vaccine candidates for regulatory approval.
- ☐ In addition to the standards, the necessary tools and guidance to conduct independent vaccine field trials to generate the evidence on the quality parameters (purity, safety and effectiveness).

Guidelines for African Swine Fever (ASF) vaccines field evaluation and post-vaccination monitoring

Initiated the development of a Guideline

- □ *ad hoc* Group meeting on ASF vaccines: field evaluation and post-vaccination monitoring held on 22–24 July 2025, Paris
- ☐ These guidelines aims to provide the necessary tools and practical advice for conducting independent vaccine trials in the field, prior to authorisation of the national vaccination programme, or as pre-purchase trials before rolling out the vaccination programme.

Guidelines for African Swine Fever (ASF) vaccines field evaluation and post-vaccination monitoring

- ☐ Study Design for Evaluation of ASF vaccine efficacy in the field
 - > Study site selection & Ethical considerations
 - ➤ Sample size, Inclusion and exclusion criteria, Randomisation
 - ➤ Blinding, Vaccination protocol, sampling and data collection
- ☐ Field monitoring following implementation of an ASF vaccination programme: Identification of side effects following vaccination (Reversion to virulence and recombination)
- □ Vaccination effectiveness: evaluating how vaccines perform in real-world settings (should supported by an INDEPENDENT ADVISORY
 COMMITTEE without conflicts of interest in vaccine production or distribution)
- ☐ Cost Risk-Benefit Assessment of the vaccination programme

Afrique

