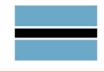


Regional Training Seminar for WOAH National Focal Points for Veterinary Laboratories (cycle III)


8 - 10 July 2025, Gaborone, Botswana

Co-funded by the European Union

Counter Proliferation & Arms Control Centre

CyberBiosecurity

Dr. Kennedy Chepukosi

CyberBiosecurity Expert IFBA-Certified (BRM, Biosecurity, BRA & CyberBiosecurity) Lecturer, Technical University of Kenya

What networked devices/equipment do you have in your organization?

Does your organization have any of these?

- Incident response plan
- Bring your own device policy (BYOD)
- Laboratory Information Management System (LIMS)

Ever heard of (or use) any of these?

Outline

- Case studies
- What is CyberBiosecurity?
- Foundations of CyberBiosecurity
- Threat Landscape
- CyberBiosecurity vulnerabilities in the laboratory
- CyberBiosecurity Risks to Materials, Data, Lab Workers, Animals & the Environment
- Developing Cybersecurity Training Programs & Fostering Awareness

Case studies

SCIENCE

These Scientists Took Over a Computer by Encoding Malware in DNA

There's no immediate threat, but as sequencing becomes more commonplace, researchers face security risks.

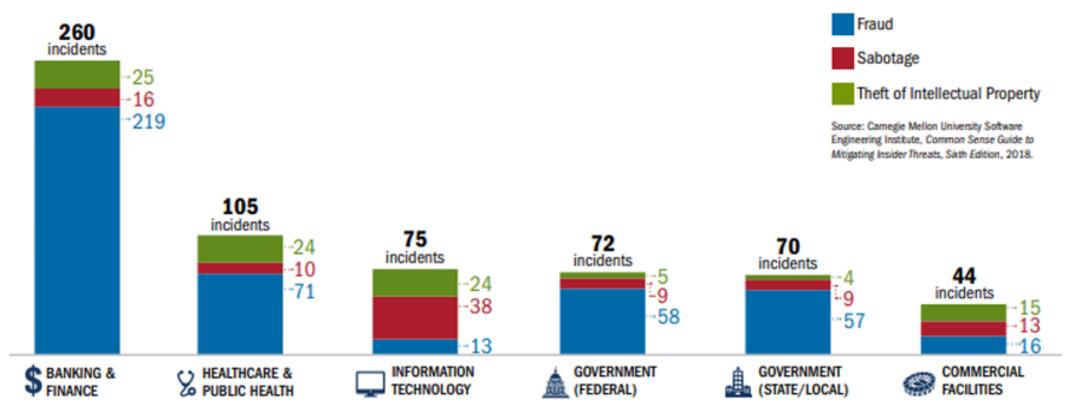
⊐ ech≯	plore ≡ _{Topics}	Week's top Latest news	Unread
	Home / Security	x 🖻 🛱	
f 13		a at risk: Hackers	۳ و
Tweet	DNA sequencing at risk: Hackers could exploit genomic data vulnerabilities		с т
in Share	by University of Portsmouth		s v (

Ransomware attack hits German pharmaceutical wholesaler, disrupts medicine supplies

AEP, a German pharmaceutical wholesaler based in Bavaria, said it was hit by a ransomware attack that could disrupt the supply of medicine to thousands of pharmacies.

Cyberattack on UK's CVS Group disrupts veterinary operations

By Bill Toulas


🛅 April 8, 2024 🛛 💓 10:45 AM 🛛 🔲 0

What Sectors are targeted?

Carnegie Mellon University Software Engineering Institute, *Common Sense Guide to Mitigating Insider Threats*, Sixth Edition.

What is CyberBiosecurity?

- "It is Nexus between Biology and Cybersecurity"
- Computers can be compromised by encoding malware in DNA sequences
- Biological threats can be synthesized using publicly available data
- Trust within the biotechnology community creates vulnerabilities at the interface between cyberspace and biology
- Awareness is a prerequisite to managing these risks

Foundations of CyberBiosecurity

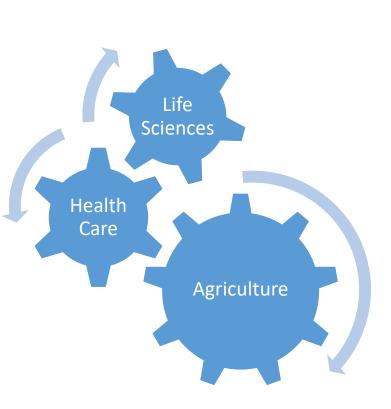
- **Multidisciplinary** •
- Associated with potentially significant impacts to ulletthe bioeconomy
- Addresses the *malicious destruction, misuse, or* • exploitation of valuable information, processes, and material
- Requires an understanding of both life science ۲ and the digital worlds

"[...] emerging hybridized discipline at the interface of cybersecurity, cyberphysical security and biosecurity."

Threat Landscape

Cyberbiosecurity by the Numbers

- Ransomware attacks succeed every **40 seconds**, with an attempt every **11** seconds (DataProt).
- 53% of connected healthcare devices at risk of a cybersecurity attack (Cynerio).
 - Most vulnerable are IV pumps and VOIP systems



CyberBiosecurity – Risks to the Bioeconomy

Threats to the Bioeconomy

- Disrupted growth and innovation
- Theft, loss, or disruption of IP and data
- Misuse of products and organizations

Impacts from Realized Risk

- Employment
- Supply chain
- Transportation
- Trade
- Security
- Cybersecurity

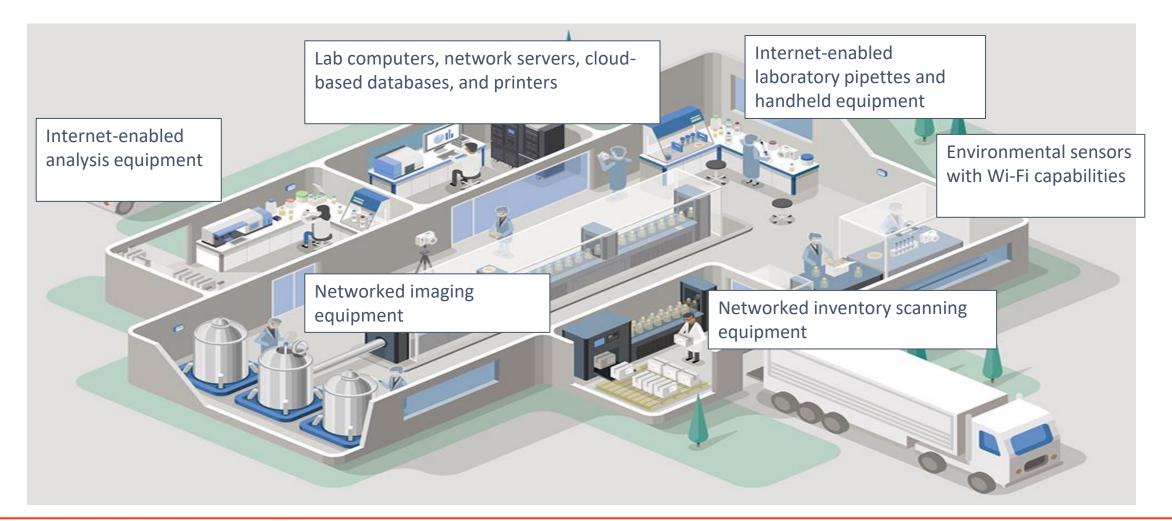
Sectors of concern

- Life sciences
 - o Research
 - Sequencing
 - Laboratory Information Management Systems (LIMS)
 - Diagnostics
 - Patient information
 - Epidemiologic data
 - Non-traditional laboratory environments

- Biomanufacturing
- Biomedical sciences
- Biotechnology
- Synthetic biology

CyberBiosecurity vulnerabilities in the laboratory

 "A weakness in system security procedures, system design, implementation, internal controls, etc., that could be exploited to violate the system security policy."



Where are the vulnerable points?

Common equipment as attack vectors

All-in-one networked printers

Cameras and Surveillance

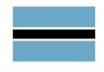
Freezer/Refrigerator Temperature Monitors

VoIP Phones

Interconnected equipment and the IOT

Lab equipment as new vectors for cyberbiosecurity attacks

- Interconnected devices and sensors can be targeted by adversaries
- "Smart" technology, thermal cyclers, incubators, freezers, environmental sensors...


Cyber-Physical vulnerabilities

- Access control systems
- Cameras and surveillance equipment
- Air handling / differential pressure systems
- Animal cage controls and containment systems

Cyber-Material vulnerabilities

- Schedules/patterns for operations
- Digital maintenance order requests and schedules
- Biological waste streams and schedules
- Environmental monitors
- Inventory management systems and acquisition management

Cyber-Transport vulnerabilities

- Record-keeping systems
- Chain-of-custody
- Transit control procedures
- Transport information and incident response planning

Cyber-Personnel vulnerabilities

- Personnel access to data/ systems
- Training and competency
- Personal devices

CyberBiosecurity Risks to Materials, Data, Lab Workers, Animals & the Environment

What is a Biological Risk?

• "The **probability** that a particular adverse event [e.g., accidental infection or unauthorized access, loss, theft, misuse, diversion or intentional release], possibly leading to harm, will occur."

CyberBiosecurity Risks

- Integrity of materials
- Integrity of data and patient information
- Worker safety
- Laboratory animals

Risk to integrity of materials

- Altering DNA/RNA sequences
- Disrupting material storage conditions
- Altering reaction parameters
- Decreasing integrity of resultant work and publications

Risk to integrity of data

- Altering, deleting, withholding, or generating uncontrolled data
- Releasing confidential data
- Creating malicious data that damages equipment or networks
- Data theft, misuse, violation of intellectual property
- Alteration of epidemiologic information
- Patient data and medical history

Risk to Laboratory workers

- Compromised lab containment
 - $\odot \mbox{Reversing containment airflow}$
 - $_{\odot}$ Compromising intrusion detection measures
- Theft or ransom of medical information
- Compromising laboratory equipment to create operational hazards

Risk to laboratory animals

- Disruption of **digitized monitoring equipment** (e.g., compromised animal cages or physical containment system)
- Alteration of animal housing conditions
 - Temperature
 - \circ Air quality
 - Noise levels
- Adulteration or interruption of supply chain for animal feed, bedding, supplies, e.t.c

CyberBiosecurity Risk and Threat Assessment

Framework of Risk and Threat assessment

Ground-up laboratory assessment

- What equipment do I have, and which of it is IoT-enabled?
- What are my assets?
- Which of my assets are valuable to adversaries, and how are they protected?
- What are my lab's threats, vulnerabilities, and potential risks?
- What can I do to mitigate risks?
- How can I measure the effectiveness of my mitigation strategy?
- How do I respond in the event of a successful or unsuccessful attack?
- How often should I revisit my mitigation protocols?

Defining Risks, Threats and Vulnerabilities

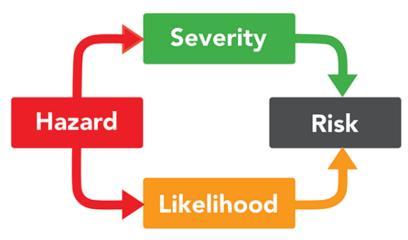
Risk is the potential for loss, harm, or damage.

Threat is an activity, deliberate or unintentional, with the potential for causing harm.

Vulnerability is a weakness in a system.

Defining Risks, Threats and vulnerabilities

Threat + Vulnerability = Risk


Threat	Vulnerability	Risk
Negligent insider	Poor cybersecurity practices	Data breach

Conducting Assessment

- 1. Identify and prioritize biological materials
- 2. Identify and prioritize the threat
- 3. Analyze the risk with biosecurity scenarios
- 4. Develop a Risk Management Program/Plan
- 5. Re-evaluate regularly

Developing Cybersecurity Training Programs & Fostering Awareness

Communication mechanisms

Know your incident response communication mechanisms...

- Phone
- Email
- Teams / Instant Messaging
- Hotlines or Call Numbers
- Alternate systems

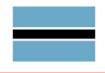
Training program development

- Identify user groups
- Perform cybersecurity risk assessments
- Assess vulnerabilities and define mitigation strategies
- Competency testing and evaluation
- Iterate as necessary

Awareness raising

- Culture of security
- Engagement of leadership
 - ${\rm \circ}$ Impact on the organization
 - $_{\odot}$ Impact on clients and public appearance
 - $\ensuremath{\circ}$ Impact on reputation

Best practices for individuals


- Proper device hygiene
- Stewardship of your digital footprint
- Approval processes for new devices
- Supervised integration of new equipment
- Thorough and frequent communication among personnel
- Protect company information and intellectual property

- Use strong, unique passwords
- Regularly update software and systems
- Implement two-factor authentication (2FA)
- Backup important data frequently

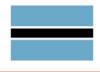
https://haveibeenpwned.com/

For organizations/Institutions

- Ensure regular pentest services
- Have BYOD policy
- Have a robust incident response plan
- Ensure compliance with cybersecurity framework(s) (NIST 2.0, ISO 27001 & ISO 27002 Frameworks, SOC2 Framework, NERC-CIP Framework, HIPAA Framework, GDPR Framework, FISMA Framework)
- Cybersecurity training programs

Key Takeaways

- ✓ **Technology presents significant security vulnerabilities** to the life science enterprise and public health space
- Cybersecurity and global health security converge with increasing digitization of health data and information
- Vulnerabilities pose a threat to individual organizations' reputation, integrity and quality of research data, intellectual property, and biological products Exploitation of these vulnerabilities could easily compromise public health and health security
- ✓ There is an **urgent need to prevent threats** to bioeconomy through integrated efforts



"Security of Biological Data and Infrastructure is a Shared Responsibility"

Thank You!

