ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ΤΕ Γ Α Μ Ο

RVF vectors and entomological surveillance

//////KAC PROV

Regional workshop on Rift Valley Fever surveillance in Northern African countries - PROVNA2 %

Tunis, Tunisia 12-14 November2024

> Maria Goffredo & Silvio G. d'Alessio IZSAM

We will speak about:

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ERAMO

- Role of vectors in transmitting RVF virus
- How entomological activities can serve surveillance

- Collection methods
- Ecology of Mediterranean mosquitoes, possible vectors of RVF

RVF vectors

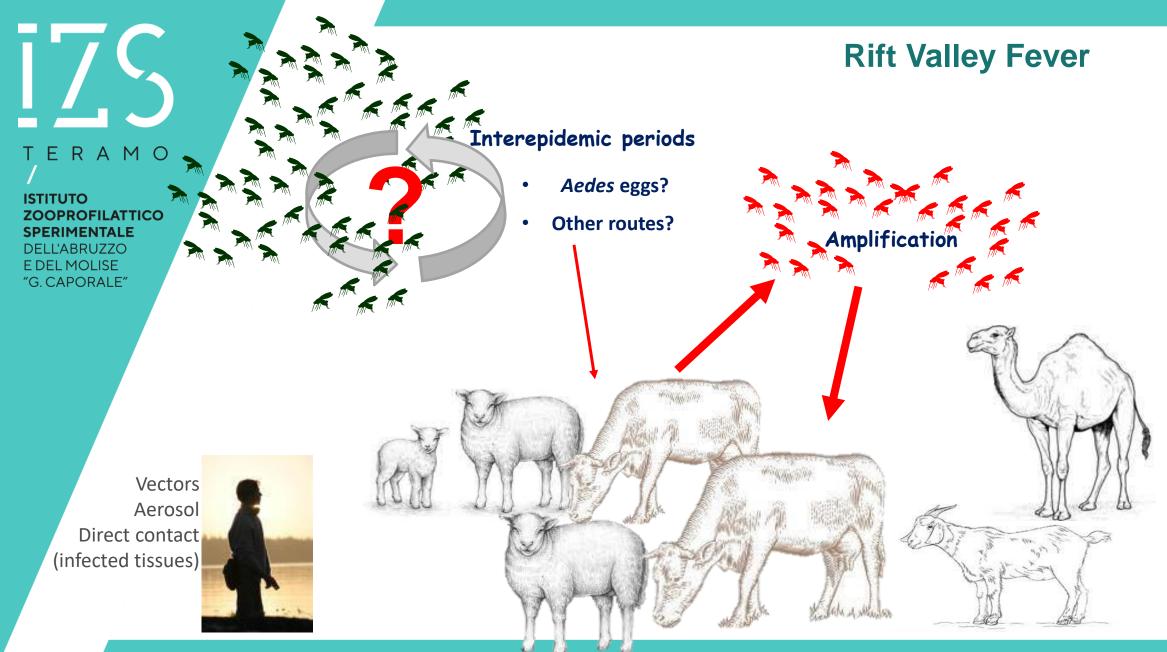
The RVF virus has been detected, in the field or under laboratory conditions, in more than 50 species of mosquitoes, belonging to at least seven genera

Two roles:

Maintenance vectors i.e. *Aedes* mosquitoes (Transovarian transmission) Amplifying vectors i.e. *Culex* mosquitoes

Aedes mcintoshi

RVFV isolated from unfed males and females hatched in dambos in Kenya (1982, 1984)


- ✓ Findings not confirmed
- Poorly studied

ISTITUTO

ERAMO

ZOOPROFILATTICO

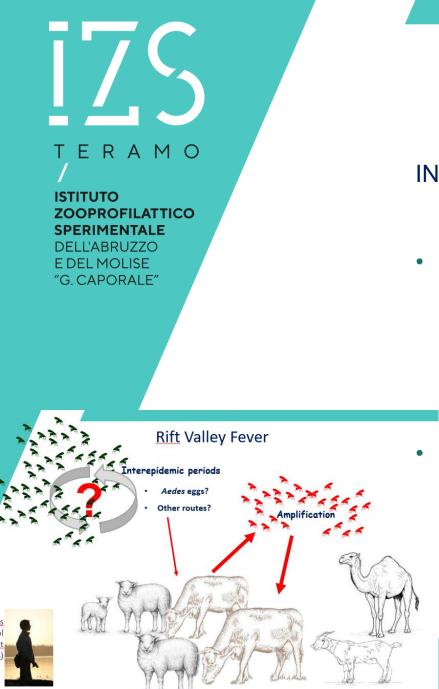
SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

TERAMO

IZS

Why entomological surveillance?


Generally speaking:

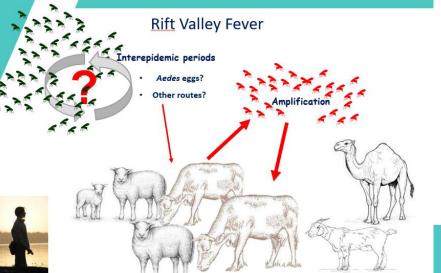
To define the distribution and abundance of vector species

✓ To look for arboviruses in the vector population

To early detect virus circulation in a given area testing mosquitoes is **very difficult**, due to the low prevalence in vector population

RVF: why entomological surveillance?

IN AREAS WHERE RVF VIRUS CIRCULATION OCCURS


- to investigate the mosquito species involved in the transmission
 - species acting as vectors
 - overwintering routes
 - transovarial transmission
- To investigate interepidemic manteinance routes

RVF: why entomological surveillance?

TO EVALUATE THE SUITABILITY FOR RVF OF DIFFERENT AREAS

- **To know** the local vector fauna:
 - Which mosquitoes are there, and how many, able to feed on susceptible animals?
 - Distribution (presence/absence) and abundance **maps**
 - Seasonal abundance

• To «feed» models for a risk-based surveillance of RVF

ECOREGIONS

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ERAMO

Sampling strategy Collection protocols should be defined

Diurnal – nocturnal

Breeding sites

target vector species

- Where?

- When?

- How?

i.e. Urban – rural – wild environment Selection of sampling areas

i.e.

i.e.

Frequency (daily, weekly, monthly, etc) Sampling period (summer, all year, etc)

Host preference (human biters, birdfeeders, etc)

i.e.Collection methodsSamples management

TERAMO

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

Collection sites can be selected basing on:

areas with high probability of mosquito presence

- Satellite imagery can help to select the collection sites
- Field trips are needed to select the exact location

WHEN ?

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

IZS

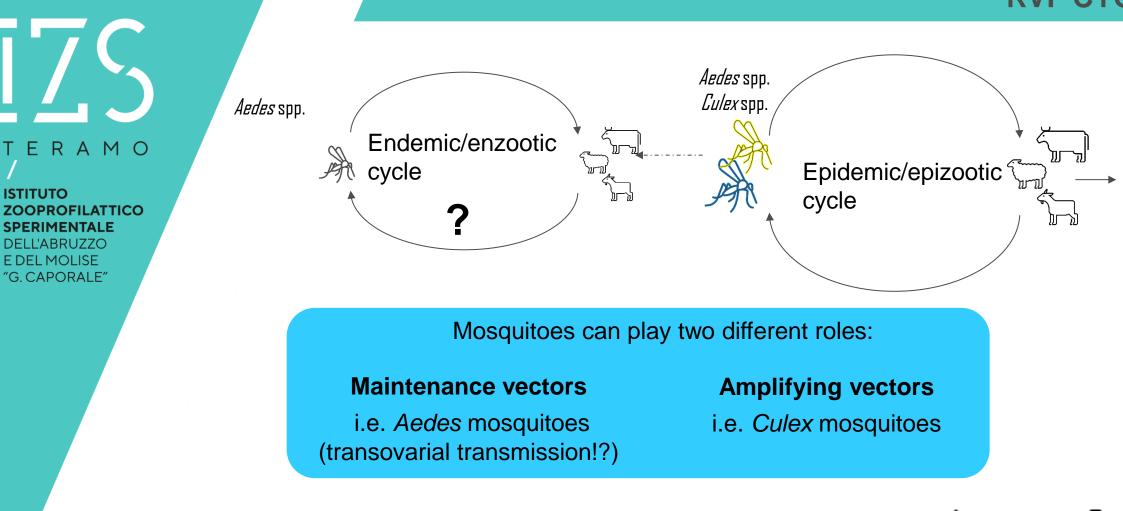
TERAMO

Sampling of a target species should be performed:

- during the mosquito seasonal peak period
- during the biting activity (nocturnal or diurnal)
- the frequency of trapping depends on the collection methods, on the aims (i.e. once or twice a month, or weekly)

HOW? We can use a wide range of attractants: ERAMO CO_2 mammophilic species ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO Specific chemical lure Human biter species E DEL MOLISE (similar to human smell) "G. CAPORALE" Nocturnal species Light Mixture for gravid mosquitoes Adult gravid females (similar to breeding sites) Host-seeking mosquitoes, according Animals to their host preference (birds, mammals, humans)

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"


IZS

TERAMO

Surveillance protocols are defined according to the ecology of mosquito species....

RVF CYCLE

Heavy rainfall

Climate factors and land use changes

can affect the emergence and re-emergence of RVF

Irrigated areas

Dams

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ERAMO

Potential RVF mosquito vectors in Mediterranean area

More than 50 species of mosquitoes, belonging to 7 genera, have been found infected in the field or under laboratory conditions

Of these at least 17 species are present in Mediterranean countries Among these, the following 14 species belonging to *Aedes, Anopheles* and *Culex* genera (including the main potential vector species) are present in the area of interest:

- Aedes (Adm.) vexans
- Aedes (Och.) caspius
- Aedes (Och.) detritus s.l.
- Aedes (Stg.) aegypthi
- Aedes (Stg.) albopictus

- Culex (Cux.) antennatus
- Culex (Cux.) perexiguus
 - Culex (Cux.) pipiens s.l.
- Culex (Cux.) theileri

Ο

- Culex (Cux.) tritaeniorhynchus
- Culex (Ocu.) poicilipes

- o Anopheles (Cel.) multicolor
- <u>Anopheles (Cel.) pharoensis</u>
- o Anopheles (Cel.) sergentii

IZS TERAMO ISTITUTO ZOOPROFILATTICO **SPERIMENTALE** DELL'ABRUZZO E DEL MOLISE

"G. CAPORALE"

Infected	under	laboratory	conditions
----------	-------	------------	------------

The following species of our list have been infected under laboratory conditions

	Species	Area of origin	Species	Area of origin
АМО	Aedes albopictus	Spain Texas	Culex antennatus	Kenya Egypt
FILATTICO INTALE RUZZO DLISE RALE"	Ae. caspius	France Egypt	Cx. perexiguus	Egypt
	Ae. detritus s.l.	United Kingdom France		United Kingdom Netherlands
	Ae. vexans	Spain Senegal Luisiana and Florida Germany	<i>Cx. pipiens</i> s.l.	Spain Morocco, Algeria, Tunisia Canada California, Colorado South. France and Tunisia Egypt
References			Cx. poicilipes	Senegal South Africa
Amraoui et al. 2012; Birnberg et al. 2019; Brustolin et al. 2017; Faran et al. 1988; Meegan et al. 1980; Gad et al. 1987; Iranpour et al. 2011; Jupp et al. 1988; Jupp et al. 2002; Lumley et al. 2018; McIntosh et al. 1973; McIntosh et al. 1980; Moutailler et al., 2008; Ndiaye et al. 2016; Turell et al., 1988; Turell et al. 1996; Turell et al. 2008; Turell et al., 2010; Turell et al. 2013; Vloet et al. 2017;			Cx. theileri	South Africa
			Cx. tritaeniorhynchus	Saudi Arabia
			An. multicolor	Egypt
			An. pharoensis	Egypt

Found infected in field

The following species of our list have been found to be infected in field

	Species	Area	Main ecosystem
	Aedes vexans	Arabian Peninsula Senegal Sudan	Irrigated area Semi-arid/Irrigated area Semi-arid/Irrigated area
	Culex antennatus	Egypt Kenya Madagascar Nigeria	Irrigated area Dambos Rice field in highlands ?
	Cx. pipiens s.l.	Egypt	Irrigated area
	Cx. poicilipes	Kenya Mauritania Senegal Sudan	Dambos Semi-arid/Irrigated area Semi-arid/Irrigated area Semi-arid/Irrigated area
I., 3;	Cx. theileri	Kenya Namibia South Africa Zimbabwe	Dambos Pans Vleis or pans ?
ek	Cx. tritaeniorhynchus	Arabian Peninsula	Wadis/Irrigated area
	An. pharoensis	Mauritania	River

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

TERAMO

Ī7

References

Ba et al., 2012; Diallo et al. 2005; Diallo et al. 2005; Ba et al. 2012; EFSA (AHAW), 2013; El Hadi et al. 2013; Fontenille et al., 1998; Hanafi et al. 2011; Hoogstraal et al. 1979; Jupp et al. 2002; Jupp et al., 2002; Miller et al. 2002 Linthicum 1985; McIntosh et al. 1973; McIntosh et al. 1980; McIntosh et al. 1973; Ratovonjato et al. 2011; Sang et al. 2010; Seufi et al. 2010; Stoek et al. 2022; Traore-Lamizana et al., 2001; Zeller et al., 1997;

NATURAL HABITATS AND IRRIGATED AREAS

Life cycle

Egg

First Larva

Coquillettia Culiseta

Uranotaenia

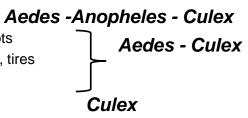
Culex Anopheles

Life cycle depends on the Imago temperature: Females require blood meal to develop eggs TERAMO at 30°C it can last just 1 week ISTITUTO ZOOPROFILATTICO **SPERIMENTALE DELL'ABRUZZO** E DEL MOLISE "G. CAPORALE" Fourth Larval stage Molting occurs between each larval and pupal stage Larva Third Larval stage Second Larval Stage Aedes

Larvae can inhabit nearly every type of water source

Four levels in classification of mosquito larval habitat

1. Ground habitats


1.1 Still waters

- 1.1.1 Permanent or semipermanent
- Marshes
- Swamps
- Exposed ponds, borrow pits
- Forest ponds
- Ditches
- Rice fields
- Wells
- Saltwater marshes
- Subterranean
- Polluted waters
- 1.1.2 Temporary
- Forest pools
- Exposed pools and puddles
- Hoofprints
- Saltwater pools
- 1.2 Flowing waters
- Exposed streams, ditches, irrigation channels
- Forest streams
- Gravel streambeds

- 2. Container habitats
- 2.1 Natural
- Bamboo
- Tree holes
 Leaf axils, bracts, bromeliads
- Pitcher plants
- Rock pools
- Fallen fruit husks, spathes
- Fallen leaves
- Crab holes
- Empty snail shells

2.2 Human made

- Water tanks, cisterns, Aec
 Domestic water storage pots
 Discarded tin cans, bottles, tires
 Miscellaneous
- Latrines, septic tanks

Aedes, Anopheles

Aedes

Culex

Aedes

Culex

Aedes

Anopheles

IZS.IT Modified by: Service, M.W. (1993). Mosquitoes (Culicidae). In: Lane, R.P., Crosskey, R.W. (eds) Medical Insects and Arachnids. Springer, Dordrecht

ISTITUTO

ERAMO

ZOOPROFILATTICO

SPERIMENTALE

DELL'ABRUZZO

E DEL MOLISE

"G. CAPORALE"

its Aed And Cul

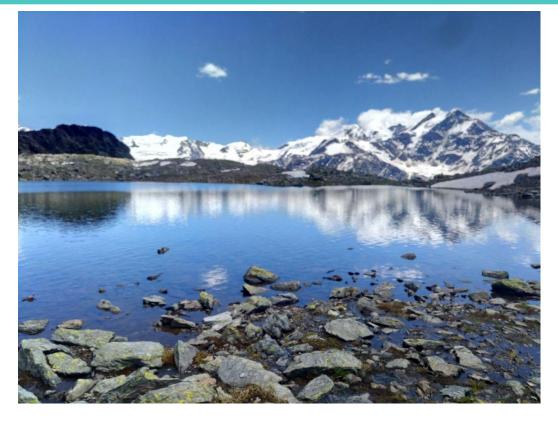
- Culex
- Aedes Anopheles Culex
 - Aedes Anopheles
 - Aedes
 - Anopheles Culex

Aedes Anopheles Culex

TERAMO

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE" **Natural habitats**: ponds with vegetation, along river edges in still zones, in areas prone to inundation, in puddles and ruts, coastal marshes or rock pools, in water-filled tree-holes, leaf axils, etc.

Man-made water bodies: rice fields, flooded cellars, construction sites, road drains and pits, water barrels, metal tanks, ornamental ponds and any type of container (e.g. in gardens or cemeteries), etc.


Aedes geniculatus Aedes berlandi Aedes pulcritarsis Anopheles plumbeus Orthopodomyia pulcripalpis

Aedes caspius Aedes detritus Aedes vexans

Anopheles spp. Culex spp.

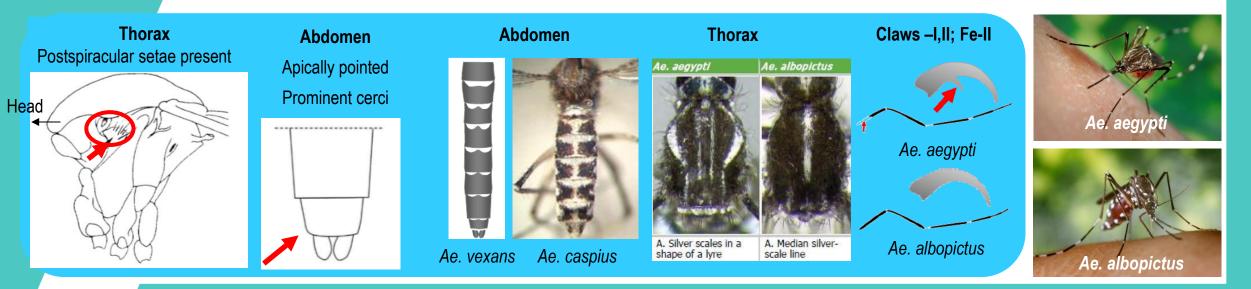
Aedes mariae Aedes zammitii Aedes cathaphylla Aedes pullatus TERAMO ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE

"G. CAPORALE"

Ecological and behavioral traits

Flight range: distance from the breeding sites (from 200m to 10 km) **Biting activity:** diurnal, nocturnal, crepuscolar (dusk and early night) Feeding behaviuor: ornitophilic and batrachophilic; mammophilic and anthropophilic; opportunistic **Endophagy/exophagy:** active search for the host indoor or outdoor **Endophily/exophily:** indoor or outdoor resting sites **Overwintering stages:** eggs/larvae/adult (larvae in few species; mated females in diapausing) **Autogeny/Anautogeny:** doesn't need/needs to perform a blood meal to lay eggs

Larval stages: wide variety of water bodies (stagnant or flowing, natural or artificial, unpolluted or polluted, small or large)


GENUS Aedes

Genus Aedes:

- Biting activities during the **day** and **night (**depending on the species)
- Include some of the most invasive (container) species: Ae. aegypti, Ae. albopictus, Ae. japonicus
- Floodwater mosquitoes: Ae. caspius, Ae. detritus, Ae. vexans, ...

Aedes mosquitoes associated with RVF in Mediterranean basin:

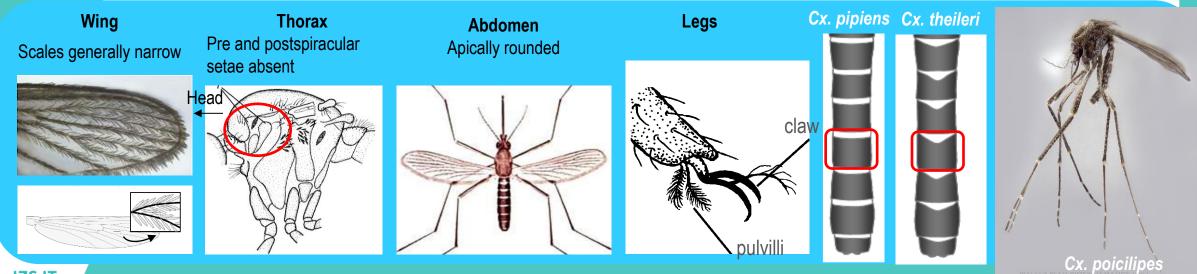
- Seasonal temperature and photoperiodicity can lead to lay diapausing eggs (*Ae. albopictus*, *Ae. vexans*, *Ae. caspius*, *Ae. detritus*) as winter diapause; eggs can withstand desiccation
- The floodwater mosquitoes can show a bimodal seasonality caused by heavy rainfall following rainless period. Human activities (irrigation and water management) could modify this pattern.
 - Aedes vexans: larval stages develop rapidly; adults have long lifespan and strong flight ability

Ae. aegypti Ae. albopictus Ae. caspius Ae. detritus Ae. vexans

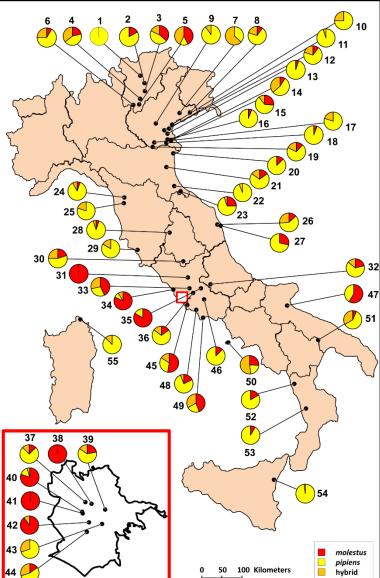
ΤΕΓΑΜΟ

TERAMO

Cx. antennatus Cx. perexiguus Cx. pipiens s.l. Cx. poicilipes Cx. theileri Cx. tritaeniorhynchus


Genus Culex:

GENUS Culex


- Adults feed on birds, reptiles, amphibians, and mammals (humans); exophilic/endophilic (depending on the species), biting activities mainly during the **dusk and night**
- lay eggs in fresh/brackish, clean/polluted ground water
- eggs are usually laid in raft

Culex mosquitoes associated with RVF in Mediterranean basin:

- winter diapause at adult stage
- Culex pipiens has two biological forms (pipiens and molestus) and thei hibrids with different ecological needs
- Culex spp. reach very high population densities as the rainy season progresses

Culex pipiens s.s.

Cx. p. pipiens

Rural

- Ornithophilic
- Anautogenous
- Eurygamous
- both aboveground and underground habitats
- wide variety of aboveground breeding sites
- heterodynamic

Hybrids

Cx. p. molestus

- **Urban**
- mammophilic (mammals and humans)
- Autogenous
- 5 Stenogamous
- prefers underground water bodies with high organic contents
- homodynamic

ON. Di Luca et al. 2016. Ecological Distribution and CQ11 Genetic Structure of *Culex pipiens* Complex (Diptera: Culicidae) in Italy Photo Donald Hobern from Copenhagen, Denmark, CC BY 2.0 https://creativecommons.org/licenses/by/2.0, via Wikimedia Commons

In Spain *Cx. pipiens* hybrid strains (and *Ae. albopictus*) appear to be able to sustain the cycle of RVFV transmission.

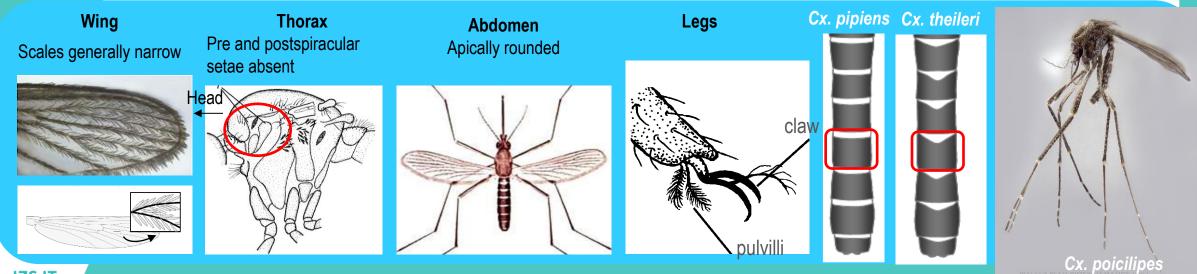
ISTITUTO

ERAMO

ZOOPROFILATTICO SPERIMENTALE

TERAMO

Cx. antennatus Cx. perexiguus Cx. pipiens s.l. Cx. poicilipes Cx. theileri Cx. tritaeniorhynchus

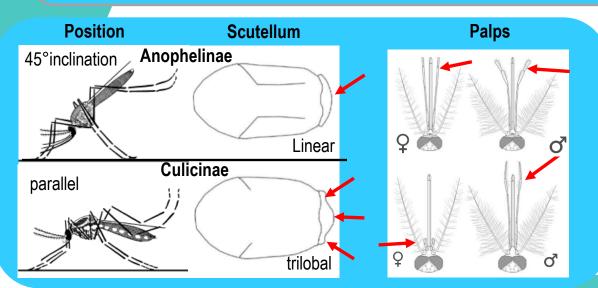

Genus Culex:

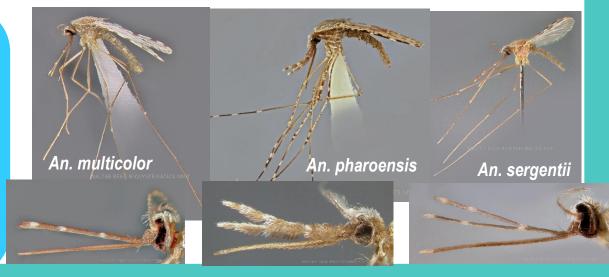
GENUS Culex

- Adults feed on birds, reptiles, amphibians, and mammals (humans); exophilic/endophilic (depending on the species), biting activities mainly during the **dusk and night**
- lay eggs in fresh/brackish, clean/polluted ground water
- eggs are usually laid in raft

Culex mosquitoes associated with RVF in Mediterranean basin:

- winter diapause at adult stage
- Culex pipiens has two biological forms (pipiens and molestus) and thei hibrids with different ecological needs
- Culex spp. reach very high population densities as the rainy season progresses

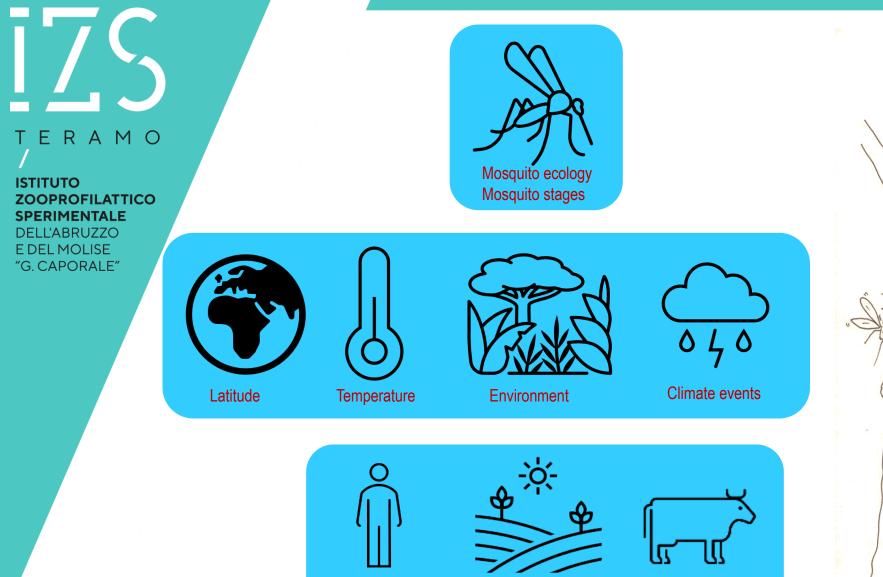

GENUS Anopheles


Genus Anopheles:

- Biting activities during the **dusk and night**, adults hide during the day in sheltered places
- Lay (individually) eggs (50-200) in clean, fresh (or brackish), still or slow-moving waters with floating vegetation
- winter diapause at larval or adult stages

Anopheles mosquitoes associated with RVF in Mediterranean basin:

- Gravid females of An. pharoensis were collected in aerial (40-290 m) samples in Mali;
- An. multicolor has strong flight ability
- An. multicolor and An. sergentii lay eggs also in brackish waters (Apr.-Jul.; Nov.-Dec.)



An. multicolor An. pharoensis An. sergentii

ERAMO

ISTITUTO ZOC SP

COLLECTION STRATEGY

Cropland

Licvestock

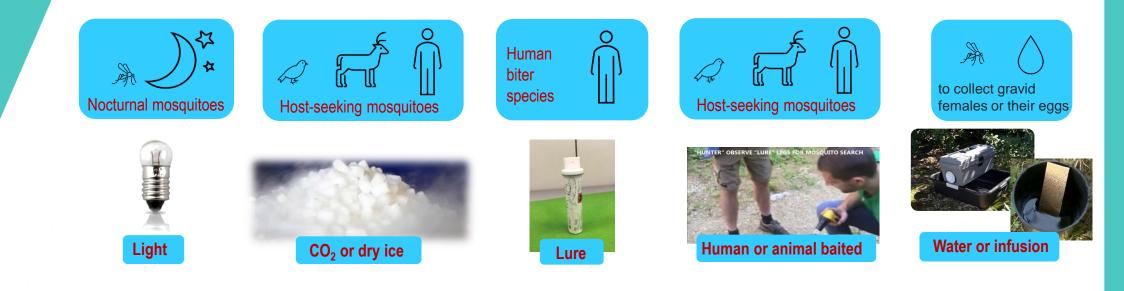
Human behavior

ISTITUTO

SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

TERAMO


 $\overline{1}$

MOST COMMON COLLECTION METHODS

HOW TO COLLECT MOSQUITOES

Based on the difference or the similarity in the ecology of the mosquitoes species, we can use a wide range of attractants:

- light for nocturnal species
- olfactory stimuli, such as carbon dioxide and host odor components (e.g. lactic acid) for host-seeking mosquitoes
- water for oviposition

ISTITUTO

ERAMO

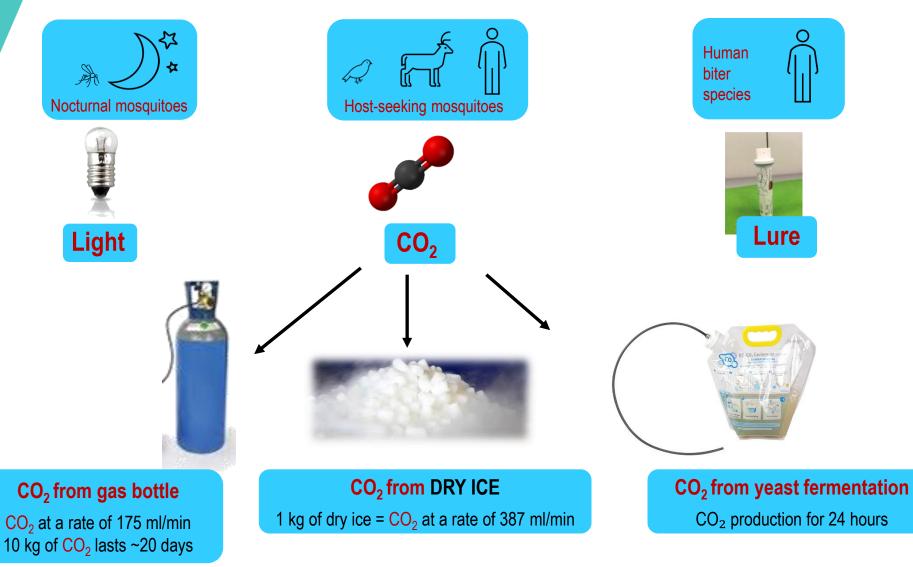
ZOOPROFILATTICO SPERIMENTALE

DELL'ABRUZZO E DEL MOLISE

"G. CAPORALE"

ECOLOGICAL NEEDS

Genus	Specie	Habitat	Biting activity	Feeding behaviour
Aedes	aegypthi	Container habitat	Diurnal	Mammals
Aedes	albopictus	Container habitat	Diurnal	Mammals
Aedes	caspius	Ground habitat	Diurnal/Nocturnal	Mammals
Aedes	detritus	Ground habitat	Diurnal/Nocturnal	Mammals
Aedes	vexans	Ground habitat	Diurnal/Nocturnal	Mammals
Anopheles	pharoensis	Ground habitat	Nocturnal	Mammals
Anopheles	sergentii	Ground habitat	Nocturnal	Mammals
Anopheles	multicolor	Ground habitat	Nocturnal	Mammals
Culex	antennatus	Ground habitat	Nocturnal	Mammals
Culex	perexiguus	Ground habitat	Nocturnal	Birds/Mammals
Culex	poicilipes	Ground habitat	Nocturnal	Birds/Mammals
Culex	tritaeniorhynchus	Ground habitat	Nocturnal	Mammals
Culex	pipiens s.l.	Ground and container	Nocturnal	Birds/Mammals
Culex	theileri	Ground and container	Nocturnal	Birds/Mammals



IZS.IT

FLYING ADULT COLLECTION

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ERAMO

 Γ

Т

FLYING ADULT COLLECTION

The most commonly used suction traps

CO₂ LIGHT TRAPS

- The most commonly used traps
- Running overnight
- Baited with light and dry ice (CO_2)

Strong points

- efficient for nocturnal species

Weak points

- by-catch of other insect species
- mosquitoes damaged by the fan
- managing dry ice and batteries (last only one night)

ast only one night

BG SENTINEL TRAPS

- Running during day and night
- Baited with BG-lure; with CO₂ (dry ice) attractive for wider range of mosquitoes

Strong points

- efficient for diurnal anthropophilic species
 - catch bag above the fan reduces mosquito damage
- Automatic shutter ensures catch integrity

Weak points

- designed to attract only some *Aedes* sp.
- managing batteries

Biogents

FLYING ADULT COLLECTION

Suction traps

BG – Pro: 2 in 1

- BG sentinel style: in standing choice, used with BG-Lure (*Ae. albopictus*, *Ae. aegypti*)
- Used with CO₂, it can capture different mosquito species
- **CO₂ light trap-style:** in hanging choice used with dry ice or yeast fermentation and LED light
- Multiple power options (battery, power supply, powerbank)
- Low power consumption for longer battery life (5 or 6 V), powered for 2 days with a 10,000-mAh power bank (W180 gr.)
- Catch bag above the fan reduces mosquito damage
- Automatic shutter ensures catch integrity

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

ERAMO

SUMMARIZING COLLECTION METHODOLOGY

Methodology	Target	Attractants	Sites	Sample management
CO ₂ Light trap	Nocturnal mosquitoes	Light and dry ice	Shaded and protected from the wind	Sample between cotton wool in tube with silica gel
BG – Sentinel (CO ₂)	Diurnal (and nocturnal) mosquitoes	Chemical lure (and dry ice)	Protected from the rainfall	Sample between cotton wool in tube with silica gel
	mosquitoes			
Gravid trap	Eggs laid directly in the water	Infusions of dead oak leaves or grass	Shaded	Sample between cotton wool in tube with silica gel

SUMMARIZING COLLECTION METHODOLOGY

Methodology	Target	Attractants	Sites	Sample management
Ovitrap	Container mosquitoes: some <i>Aedes</i> sp.	Water	Close to or under vegetation or near buildings	In plastic bags In water for rearing
	See M			larvae
Netting, dipping, aspirating	Larvae		Breeding sites	Rearing L1-L3 larvae to L4 larvae or until
		None		adult emergence
Aspirator	Endophilic or exophilic mosquitoes		Indoor or outdoor	Sample between cotton wool in tube with silica gel
		None (indooor) or human/animal bait (indoor/outdoor)	BACKPACK ASPIRATOR	

TERAMO

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

THANK YOU FOR YOUR ATTENTION

Entomology Unit Public Heath – IZSAM

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELL'ABRUZZO E DEL MOLISE "G. CAPORALE"

IZS.IT

Culex pipiens complex (or assemblage)

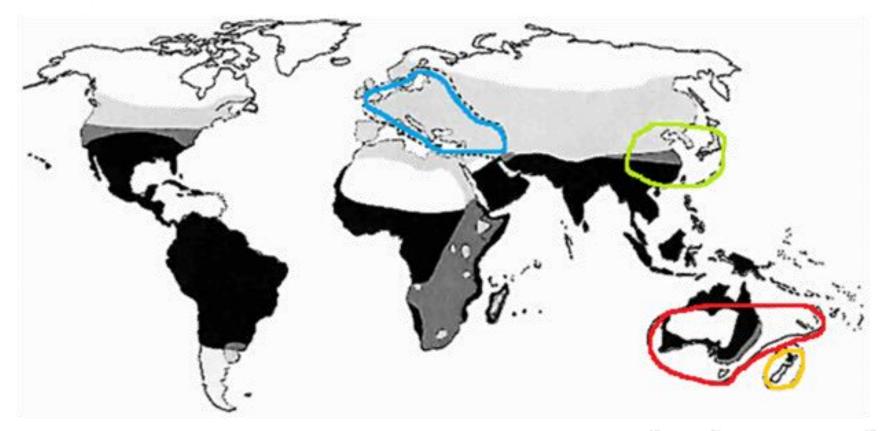


FIGURE 1. Distribution of the *Culex pipiens* complex and its sibling species based on maps of Dahl,³⁵ Belkin,³⁶ Mattingly and others,³⁷ and available literature.^{12,38,39} Light gray = Cx pipiens; black = Cx quinquefasciatus; dark gray = overlapping ranges of Cx pipiens and Cx quinquefasciatus; region marked by dotted line = Cx torrentium; region marked by solid line = Cx australicus; region marked by dashed line = Cx pipiens pallens; New Zealand marked by dotted and dashed line = Cx pervigilans.

Smith and Fonseca, 2004. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). Am. J. Trop. Med. Hyg., 70(4), 2004, pp. 339–345