ROSLN

Les trypanosomes et la résistance aux produits - Un défi majeur en Afrique

Liam Morrison, Roslin Institute, University of Edinburgh

Mike Barrett, University of Glasgow

Harriet Auty, University of Glasgow

African trypanosomes

Three major species affecting human and animal health

Trypanosoma congolense Trypanosoma vivax Trypanosoma brucei

T. brucei

African trypanosomes & disease

799 human cases in 2022
~55 million cattle infected, ~3 million deaths
~120 million cattle at risk

Cause huge economic losses to agriculture, estimated to be **\$2.5** billion/annum for cattle production in East Africa alone (e.g. **70 million** doses of trypanocide sold each year)

Shaw et al, 2014, Prev Vet Med; Giordani et al, 2016, Parasitology

Current methods of control

Trends in Parasitology

HE UNIVERSITY of EDINBUR Royal (Dick) School of /eterinary Studies

Richards et al, 2021, Trends in Parasitology

Current methods of control

- There is no vaccine for AAT
- Vector control includes tsetse traps and insecticides
 - Requires maintenance & infrastructure
 - Tick resistance is an increasing problem for insecticide use

LSTM Tsetse project

THE UNIVERSITY of EDINBURGH Royal (Dick) School of ∕eterinary Studies

YouTube

Veterinary trypanocides

- Resistance to all drugs has been reported since the 1970s
- Current effort (GALVmed/BMGF) has identified candidate therapeutic that may result in the first new trypanocide for <60 years

JUJNU

Veterinary trypanocides

- Isometamidium (ISM) is a phenanthridine compound generated by fusing parts of homidium (ethidium bromide) and diminazene
- Diminazene & Homidium both used as therapeutic drugs
- Isometamidium is currently the only available drug for prophylaxis
- Drug target is mitochondrial (accumulate in kinetoplast the trypanosome mitochondrion)

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

- Farmers use drugs for both prophylaxis and treatment
- Farmers mostly treat on basis of clinical signs
- lack of pen-side diagnostic test means that treatment accuracy is variable

THE UNIVERSITY of EDINBURGH Royal (Dick) School of Veterinary Studies

Richards et al, 2025, PLOS NTDs

Farmer questionnaires

Stakeholder workshops

Frequent farmer comments:

- Drug quality is variable
- Sometimes drugs don't work quality or resistance issues?
- Drugs don't work as well as used to
- Some think needing to use more frequently than used to (3 monthly cf 6 monthly)

Treatment failure with trypanocides is often reported – what is driving this?

Treatment failure can result from:

- Drug resistance
- Inappropriate use of drugs
- Poor quality/counterfeit drugs

Identifying which of these is the reason(s) driving treatment failure in a particular scenario is not straightforward

Richards et al, 2025, PLOS NTDs

Inappropriate drug use

Drug efficacy will be affected by:

- Administering the wrong dose
- Administering via the • wrong route
- Administering drugs • formulated incorrectly (e.g. wrong diluent)

All of these happen, but we know little about the

Poor quality/counterfeit drugs

Counterfeit drugs are anecdotally widely reported – **few robust data** West African study analysed drugs purchased from official and non-official sources

- 51.9% of products were non-compliant (>10% divergence in stated content)
- Figure was higher in drugs bought from non-official sources
- Non-compliance was higher for ISM (73.91%) than DA (50%)

Recent study from Tanzania reported higher compliance (for ISM)

• However, counterfeits were readily detected and available

Bengaly et al, 2018, BMC Vet Res; Richards et al, 2025, PLOS NTDs

Poor quality/counterfeit drugs

Counterfeit drugs clearly occur, but other factors can also impact upon drug quality

- Drug storage
- Drug formulation (diluent)

Multiple issues contribute to the difficulty in maintaining drug quality

- Formal versus informal market
- Lack of regulation for veterinary products
- Difficulty in easily assessing drug quality in the field
- Literacy/instructions on packaging not in local language

- Sustained reporting (E & W Africa) of treatment failure
- Very little knowledge on mechanisms of resistance and no markers, particularly for *T. congolense* & *T. vivax*
- Very little (no) understanding of the dynamics of and the drivers of drug resistance emergence and spread

Resistance has been validated in the field

- Intervention trials (treatment & follow up)
- Single & double resistance (isometamidium & diminazene) has been identified
- Isolated parasites validated as resistant (*in vivo* tests by experimentally infecting and treating mice or cattle)
- Expensive & resource intensive
- Markers for resistance would enable testing & screening

Drug resistance marker?

- Diminazene resistance in *T. brucei* has been shown to occur due to loss of a key transporter, TbAT1
- Orthologue was identified in *T.* congolense (TcoAT1) and proposed to contain drug resistance related polymorphisms
- However, there is no TbAT1 orthologue in *T. congolense*
- This gene is therefore not a marker for resistance and should not be used

Munday et al, 2013, Int J Parasitol Drugs Drug Resist

Almost all knowledge & resources are from T. brucei

99% of knowledge and resources come from *T. brucei* Assumption has been that this will be directly translatable to *T. congolense* & *T. vivax* – *not the case*

Efforts underway to improve ability to work with T. congolense and T. vivax in vitro

- will improve ability to identify mechanisms and markers of resistance
 - identified mechanism of resistance to ISM

Giordani et al, 2016, Parasitology; Awuah-Mensah et al, 2021, PLOS Pathogens

New drug hope - Benzoxaboroles

- Class of compound chemically distinct to existing drugs
 - acoziborole in clinical development for Human African Trypanosomiasis
 - benzoxaborole in clinical development for animal trypanosomiasis
- Relevant class of benzoxaboroles are prodrugs
- Drug target defined (genome wide screen) as CPSF3 (Cleavage and Polyadenylation Factor 3)
- Enzyme (Carboxypeptidase; CBP1) identified that converts prodrug to active drug
- Mutation in CBP1 results in resistance (shown to occur in *T. brucei*, T. congolense & *T. vivax*)
- Potential marker for resistance

GAL

RESISTANT

Summary - where we are at

- Improving understanding of
 - Mechanisms (markers?) of resistance beyond T. brucei
 - Epidemiology of drug resistance in the field
 - Causes of treatment failure
- Improving laboratory capabilities
 - Improved culture for *T. congolense*
 - Genetic toolkit for T. congolense
 - Progress with *T. vivax*
- Stakeholder & funder engagement with problem
 - meeting with >140 attendees in Tanzania, 2023 (<u>https://sulsa.ac.uk/salt-tz/</u>)
 - EU COMBAT project (https://www.combat-project.eu/)

Prospect of first new drug in >60 years

Summary - what is needed going forward?SLN

- Increased laboratory efforts
 - Improved capabilities to work with relevant species/strains
 - Drug discovery & development pipeline
- Better understanding of drug use, and drug resistance & treatment failure in field
 - Market scale, details and quality
 - Socioeconomics; what are farmers using and why?
 - Markers of resistance would enhance efforts
 - How do we integrate with insecticide use?
 - How do we best integrate a new drug into existing setting?
- Increase/improve communication & harmonization across trypanosome research & control stakeholders

Acknowledgements

Vector and Vector-Borne Disease Institute, Tanzania Oliver Manangwa

Paul Buyugu James Mlacha **Furaha Mramba** Tilla Shinini Emmanuel Sindoya

National Institute for

<u>Medical</u> <u>Research, Tanzania</u> Lucas Matemba

FAO Giuliano Cecchi

GALVmed Michael Pearce

University of Glasgow Harriet Auty Shauna Richards Davide Pagnossin Mike Barrett Ryan Ritchie Louise Matthews Shaun Keegan

<u>Liverpool School of Tropical</u> <u>Medicine</u> **Steve Torr** Isabel Saldanha Jennifer Lord

University of Glasgow

> Institute of Tropical Medicine, Antwerp Jan van den Abbeele

Serengeti, Simanjiro and Pangani District authorities

Commission for Science and Technology (COSTECH)

Tanzania Wildlife Research Institute (TAWIRI)

Tanzania National Parks (TANAPA)

