AOUATIC DISEASE SURVEILLANCE

Larry Hammell
Professor, Dept of Health Management Atlantic Veterinary College, University of Prince Edward Island Charlottetown, PE, Canada

Director, WOAH Collaborating Centre Epidemiology \& Risk Assessment for Aquatic Animal Diseases (Americas)

Scientific Advisor WOAH Aquatic Animal Health Strategy

WOAH Perspectives on Surveillance

- Primary reasons:
- Evidence for self-declaration of disease freedom,
- Early detection of first case to enact contingency plans
- Describe pathogen distribution (for control and movement restrictions)

Transparency in global aquatic animal disease status

Surveillance data

Member Countries report aquatic animal disease events detected in its country / territory

Regular notification of presence or absence of WOAH-listed diseases

Dissemination (WAHIS)

Disease surveillance

- Disease detection
- A) FIRST cases in previously negative area
- B) new cases in endemic area
- Involves
- disease sampling / testing intensity decisions
- Disease control actions
- Movement restrictions

Passive versus Active Surveillance

Passive: disease information generated for another purpose but informs status

- Vet visits, urgent calls from producers, etc
- Requires method that info will enter regulatory system "knowledge"
- High probability that delayed reporting and responses (hampering investigations)

Active: sampling for disease purposefully designed to describe infection distribution or declare absence

Important Consideration

- Registration / permitting process for live animal movements
- identify farms / animals when designing sampling strategy
- ensure unexplained mortality events will be documented and investigated
- Without this, passive surveillance is much less effective

AQUATIC (Active) Surveillance Issues to

 consider- Population is difficult to visualize and quantify
- Large population sizes and value (at group level)
- Limited access to individuals representative of the general population
- Wild-farmed interactions can be intense
- Large number of species and growing environments
- Need strategies to conserve resources and increase probability of detecting cases in early stage of outbreak

Probability of Freedom

Historical Surveillance

Routes of introduction

Low cost surv + No cost control

Passive Surveillance
Mod cost surv + No cost control
NO cases
Active Surveillance (early detection if occurred)

NO cases
Mod cost surv + Low cost control
Active Surveillance with LOW Specificity (early detection of FALSE positive)

Case(s)
Mod cost surv + Mod cost control
Active Surveillance with LOW Sensitivity (delayed detection of true positive)

D = detection
 All with effective \& rapid control

Early detection Effective control/ contingency

Early detection

D = detection

Delayed control / contingency

Surveillance design

- Basic knowledge about aquatic population structures often lacking
- e.g. total number of animals stocked, movement of equipment and animals between locations, details of their potential for pathogen introduction
- Active surveillance
- When population structure and potential introduction changes are rapid or unpredictable
- Uncertainty makes most conclusions about disease status unreliable
- Risk-based surveillance
- Mixed age classes and species at the same farm, close proximity to other sites, and lack of biosecurity barriers
- Passive surveillance (if susceptible species present) relies on
- System able to receive and act on alerts Population dynamics uncertainty is likely associated with unreliable passive reporting system

Biased sampling

Convenience samples

- Risk-based samples
- Moribund with specific external characteristics known to be more common for disease of interest

Risk-based surveillance

- Goal:
- Optimize performance of new or existing surveillance systems
- Intentionally use selective sampling of highrisk sub-populations
- to increase probability of detecting positive individuals within general population

Risk-based Sampling

- Use BIAS to its advantage
- But it has limitations
- Is bias "direction" known?
- Assumptions that bias toward detection if sample sick or slow individuals
- From population perspective:
" Sample is from "sick population" (i.e. sick segment of population)
- Dangerous IF make an error in the direction of the bias
- If bias away from infection, decrease probability of inclusion of infected individual

Moribund fish
(fish with clinical signs of

Prevalence in sample of moribund fish DOES NOT estimate prevalence in general population

Prevalence vs detection

- Selection bias toward detection is not used to estimate prevalence
- Detecting ZERO positive in biased (i.e. toward detection) sample is more reliable than ZERO positive in random sample
- Only a few opportunities in production cycle for random sampling
- Usually handling stresses involved

Disease detection

- Diagnostic tests are imperfect
- Particularly when attempting to detect asymptomatic individuals
- New cultured species will have new pathogens identified

Biasing samples can be good

- We routinely bias our samples toward detection
- By looking for individuals that have characteristics common in the diseased population
- Smaller individuals (compared to cohorts)
- Off-feed or altered swimming behaviour
- Slow swimmers
- Fish with lesions
- Can identify higher risk farms or clusters of farms to purposively apply same selection bias

Conclusion

- Optimizing disease control and prevention requires surveillance evidence to support practices
- Sampling and test performance are two important considerations for surveillance programs
- Affecting decisions and confidence in results
- Contingency plans should be included to address surveillance outcomes

