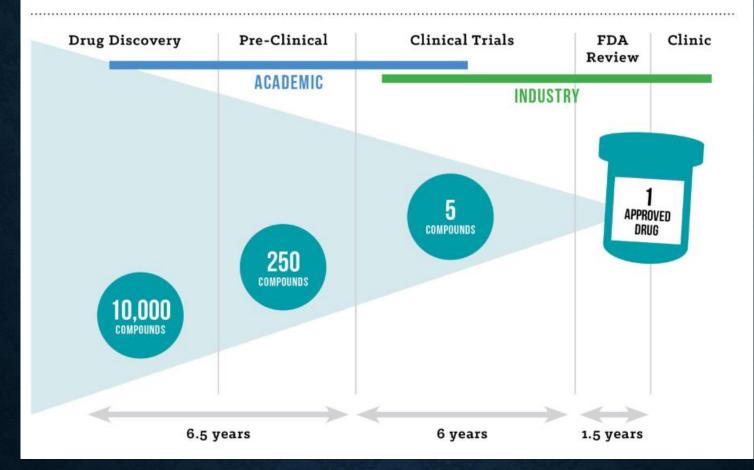

The role of research institutions in shaping the future of veterinary pharmaceuticals and pharmacology

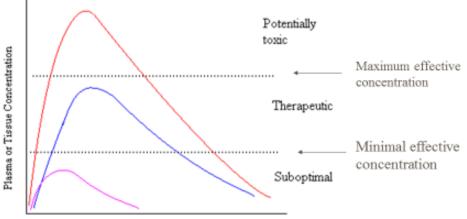
Vinny Naidoo 2023



ROLE OF VET PHARMACOLOGISTS

- Teach: General and applied/clinical pharmacology
- Clinical consultations
 - Optimized treatments
 - Specialized support (epilepsy, oncology, AMR)
- Research
 - Basic and development research
 - Toxicity testing
 - Clinical trials
- Animals Ethics
 - Ethics committees and specialized support
- Regulatory
 - Evaluations and compliance
 - Pharmacovigilance

THERAPEUTIC DEVELOPMENT PIPELINE


https://pediatricsnationwide.org/2017/04/24/discovery-to-drug-development-expanding-the-role-of-academic-centers/

ANIMAL CLINICAL TRIALS

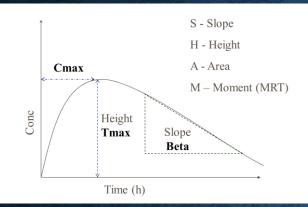
- Two aspects of animals used in research
 - Preclinical Toxicity Testing: Testing using selected animals to elucidate the toxic potential of a molecule.
 - Clinical Testing
 - Target animal pharmacology
 - Target animal toxicity testing
 - Target animal efficacy testing
 - Generic drug development
 - Food safety studies

TARGET ANIMAL PHARMACOLOGY

- To determine the basic pharmacology of the drug
 - Pharmacokinetics
 - Basic efficacy in disease models or induced disease
 - Optimal formulation
 - Dose finding studies

TARGET ANIMAL TOXICITY STUDIES

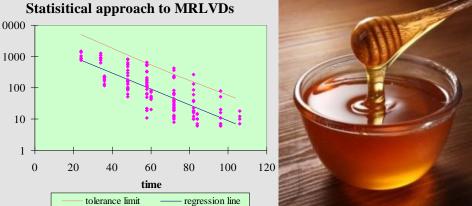
- Undertaken in the target species
- To elucidate the basic safety of the molecule (Similar to Phase II clinical Study)
- Controlled overdose study
 - 0, 1, 3, and 5x (or 10x) overdose
 - Simulate worst case scenario
 - Small sample size (5 to 10 animals per group)
 - High dose accounts for smaller sample size
 - Usually terminal, with full necropsy evaluation



TARGET ANIMAL EFFICACY STUDIES

- Proof that a product works (Equivalent to phase III)
- Conducted under field conditions
 - Species specific
 - Final formulation at the recommended dose
 - Treat the each indication as it occurs naturally
 - Under the stress conditions in the field
 - Uses owner animals
 - Same ethics process as Phased clinical studies

GENERIC DRUG DEVELOPMENT



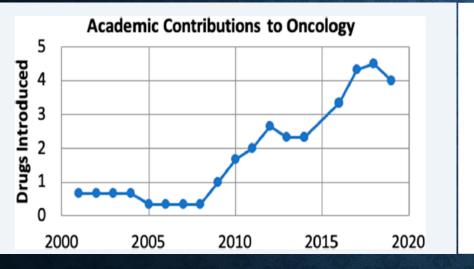
- Bioequivalence Studies
 - Animal Study: Per Species at the max dose
- Biowaivers
 - Identical formulations
 - Oral water soluble products (simple solutions)
 - Injectable water soluble (needs motivation, based on excipients)
 - BCS classification: Not acceptable
 - Dissolution: Only accepted for showing equivalence between different dosage strengths and International and SA formulation

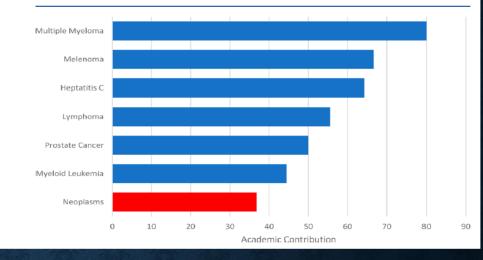
FOOD SAFETY STUDIES

- To prove the food is safe for consumption or production
- Treating animals and collecting samples and prove they safe (Milk, eggs, meat)
- Concentration measured agains MRLs

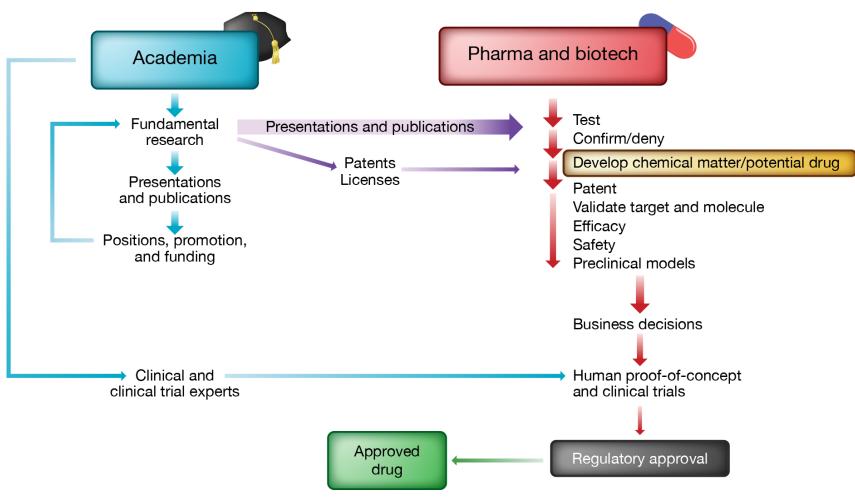
COSTS OF DRUG DEVELOPMENT

- New human medicines
 - \$2 billion
- New veterinary medicines
 - \$22.5 million companion animal product
 - \$30.5 livestock product
 - Are molecules really vet specific??
 - Carprofen, pimobendin, VetMABS, Antibiotics


MANUFACTURING


- Upscaling
- Batch to batch consistency & Batch testing
- Stability Testing
- Compatibility Testing
- Good Manufacturing Practice (cGMP)

ACADEMIA IN DRUG DISCOVERY


- Big pharma is investing less
 - Consolidation
 - Expense of drug R&D
 - Non-communicable Diseases
 - Employ experienced researchers
- Academia
 - Not training sufficient PhDs
 - Insufficient funds
 - Research potentially too basic -Research not commercially viable
 - Focus on areas with fundings vs areas of need

IMPACT OF FINANCES ON ACADEMIA

Kinch et al, 2020

Flier, 2019

THE FUTURE

- Locally produced and tested products
 - Ethics
 - Facilities
- Analytical Chemistry
- Clinical Trials
 - Local clinical trials
 - GCP compliance
 - Clinical pathology, anatomical pathology
- Products aimed at local diseases
 - Vaccines, biologicals and chemicals
 - Local food consumption
 - Antimicrobials use and stewardship
- Evaluate target pathways instead of focusing on NCEs

CAPACITY DEVELOPMENT

- Development researchers and pharmacologists
 - Regulatory science
 - Analytical chemistry
- Advanced models
 - Molecular biology
 - Cloning, CRISPR
 - Biological products vs chemicals
- Pharmaceutical Chemistry
 - Formulation chemistry
 - Clean rooms
 - Pilot production
 - Manufacturing

FACILITIES

- Need to support research
- BSL animal housing facilities
- Analytical chemistry
- Correct MOUs
- Investment

WAY FORWARDS

• Partnerships

- Generated 50% of all new molecules registered over last 20 years
- Academia/Research Institutes
 - Evaluates physiological processes (academia) + new molecule libraries
 - Train new academics
 - Correct research environments
- Industry
 - covers costs of regulatory development
 - Contribute to PhD training/internships
 - Utilize academic PIs

REFERENCES/READING

- Frearson, J. and Wyatt, P., 2010. Drug discovery in academia: the third way?. *Expert opinion on drug discovery*, *5*(10), pp.909-919.
- Flier, J.S., 2019. Academia and industry: allocating credit for discovery and development of new therapies. *The Journal of clinical investigation*, *129*(6), pp.2172-2174.
- Kinch, M.S., Horn, C., Kraft, Z. and Schwartz, T., 2020. Rising academic contributions to drug development: evidence of vigor or trauma?. ACS Pharmacology & Translational Science, 3(6), pp.1427-1429.
- Bryans, J.S., Kettleborough, C.A. and Solari, R., 2019. Are academic drug discovery efforts receiving more recognition with declining industry efficiency?. *Expert Opinion on Drug Discovery*, 14(7), pp.605-607.
- Spicer, A.J., Colcomb, P.A. and Kraft, A., 2022. Mind the gap: closing the growing chasm between academia and industry. *Nature Biotechnology*, *40*(11), pp.1693-1696.
- Frearson, J. and Wyatt, P., 2010. Drug discovery in academia: the third way?. *Expert opinion on drug discovery*, *5*(10), pp.909-919.