BS, DVM, PhD, DACVPM
Professor
Department of
Production Animal
Studies
University of
Pretoria
Co-Editor-in-Chief for Preventive Veterinary Medicine

Risk factor analysis

Geoffrey T. Fosgate
GF-TADs
Foot and Mouth Disease
Risk Assessment Training Workshop Johannesburg, South Africa 19-21 September 2023

Measures of association

- Epidemiology brief
- Association versus effect
- Measures of association
- Risk difference
- Vaccine efficacy
- Risk ratio
- Odds ratio
- Statistical significance
- Expert opinion exercise

Epidemiology

Purpose of epidemiology

- Determine the magnitude of disease in populations
- Study the natural history and prognosis related to disease
- Identify causes and predictors of health outcomes
- Evaluate preventive and therapeutic factors
- Collect quantitative data as the foundation for public policy

http://furballcottagenarrative.blogspot.com/

http://bojack.org/2006/05/
breaking_news_bird_flu_outbrea.html

Correlation/causation

Association/effect

DOES PIZZA PROTECT AGAINST CANCER?
 Carlo LA Veconi ${ }^{1 / 2}$
${ }^{2}$ Stituto di Rircerche Farmacologiche "Mario Negri"
${ }^{3}$ Centro
${ }^{3}$ Rifiterimento Oncologico, Aviano (PN), Haly

"Strituto "Regina Elena" per lo Studio e la Cura dei Tumari, Rame, Ataly
sInternational Agency for Research on Cancer, Lyon, Frunce
International Agency for Research on Cancer, Lyon, Frunce
IStituto di Statistica Medica e Biometria, Universita degli Studi

We analyzed the potential role of pizza on cancer risk, ies conducted in Italy between 1991 and 2000. Cancer sites
weret oral cavity and pharynx (598 cases), esophagus $(304$
 (778) cases). Controls were 4,999 patiente admitted for acute
non-neoplastic conditions to the same hospital network as cases. Odds ratios for regular pizza consumers were 0.66
 $0.61-0.89$ for colon and 0.93 ($955 \mathrm{cc}==0.75-1.1$ () for rectal
cancer. Pizza appears therefore to be a favorable indicator of risk for digestive tract neoplasms in this population.
02003 Wilog-Liss, Inc.
Key wordas digestive tract cancers; lycopene; pizas; risk factors
Pizza is one of the best known and most widespread Italian sign of ltaly worldwide. Investigating and quantifying any potential role of pizzan on cancer risk secms to be a curious issur, bue may well have interesting imp
Limited and incouclusive information is aveilable on the poten-
tial influence of pizza, however, as a food item or as an indicator of any spocific dietary pattern, on cancer risk An inverse trend in prostate cancer in the U.S. Health Professionals Follow-Up Study. ${ }^{12}$ In a case-control study from southern ltaly on 132 cases
of colorectal cancer, the odds ratio (OR) for frequent consumption of colorectal cancer, the odds ratio (OR) for frequent consumption
of pizza was 0.89 (95% connfidence interval, $\mathrm{CI}-0.51-1.53)^{3}$ We analyzed data from a large and integrated network of case-
control studies conducted in Italy, including detailed information controus suciares conducted in layly, including detailed information
matieril. And methods
Case-control studies on digestive tract and laryngeal neoplasms
have been conducted between 1991 and 2000 in various regions of notherm, central and southern Italy ${ }^{4}$.-7 Our analysis included 998
patients $(512$ men, 86 women) with incident histologically conpatients ($(12$ men, 86 women) with incident, histologically con-
firmed cancer of the oral cavity and phayn, 30 (277 men, 29
women) with squanous-cell oesophangeal cancer, 460 (415 men
 rectum. The comparison group included 4, 4,999 patients (2,72
men, 2,275 women) admitted to the same hospital petwork as cases for acute, non-meophlastit c ciscosses. Twenty-five percent of controls dic conditions, 18% for acute surgical disorders and 27% for niscellaneous other ilinerses. Response rate was more than 95% All subjects were interview.
All subjects were interviewed using a standard questionnaire, including information on socio-demographic factors and lifestyle
habits, such as tobacoo smoking and alcohol consumption. Sub-
jects' usual diet before diagnosis (or hospital admission) was investigated using a validated 78 -item food frequescy question-naires-s-t that included a specific question on pizza. For the present
analyses, pizza cetang was classifid in 3 categories: non eaters
aly (<1 portion of pizza/month), occasional caters ($(1-3$ portit OR and the cortesponding $95 \% \mathrm{CI}$, for subsequent levels of pizza eating were derived by unconditional multiple logistic re--
gression models including terms for age, gender, study center, gression models, including ierms for age, gender, stuay center,
educaion, alcoconol and tobacco consumption, energy intake, body
mass index and for colon and rectuma, a mesurue of physical mass ind
activity.

pesuts
Table I shows the distribution of cases and controls according to pizza consumption and the corresponding multivariate ORs. Com-
pared to non-pizza-consumers, the multivariate ors for pizza eaters (≥ 1 portion/month) were 0.73 for oral cavity and pharynx,
0.53 for esophagus, 0.85 for laryma, 0.81 for colon and 0.88 for rectum. Corrsesponding ORs for regular pizza colters (≥ 1 portion/ 0.82 for laryngeal, 0.74 for colon and 0.93 for rectal cancer. The trends in risk were significant for oral and pharyngeal, esopphageal No approcieble No appreciable difference was found according to gender for
colorectal cancer, the ORs of pizza consumers being 0.78 ($95 \% \mathrm{Cl}$:
 colon cancer, and 0.91 (95% CI: $0.73-1.14$) and 0.82 (95% CI:
$0.63-1.08$) respectively for rectal cancer (not shown in Table 1). The data were inakequate to analyze women ooly for upper digesdiscussion
The findings of this uniquely large and integrated series of case-control studdess from Italy suggest that pizza eating is a
favorable indicator of risk for digestive tract neoplasms. In contrast, major sources of refined cartootydrdates in itthly, mainly brend
and pastr, were difectly associnted with the risk of colorectal \square
Grant sponsor. Matian Association for Cancer Research and the laliun
\qquad
 mail: gallusemmanonegnia
Received 18 March 2003; Revied 5 May 2003; Accepted 20 May 2003 DOI 10.1002 ${ }_{\text {Jj. }}$. 11382

Does pizza protect against cancer? Silvano Gallus, Cristina Bosetti, Eva Negri, Renato Talamini, Maurizio Montella, Ettore Conti, Silvia Franceschi, Carlo La Vecchia International Journal of Cancer 2003; Volume 107, Issue2 Pages 283-284
https://doi.org/10.1002/ijc. 11382

Association/effect

Table I. Odds ratios (OR) and 95\% confidence intervals (CI) for various Neoplasms ${ }^{1}$ According to Pizza Consumption in Italy 1991-2000

Cancer	Pizza eaters			OR (95\% CI)			x^{2} trend (p) ${ }^{4}$
	Non	Occasionaỉ	Regular ${ }^{3}$	Occasional ${ }^{3}$	Regular ${ }^{3}$	All eaters	
Oral cavity and	310	213	75	0.76	0.66	0.73	7.92
pharynx				(0.60-0.95)	(0.47-0.93)	(0.59-0.91)	(0.005)
Oesophagus	175	105	24	0.57	0.41	0.53	17.46
				(0.42-0.78)	(0.25-0.69)	(0.39-0.72)	(<0.001)
Larynx	236	167	57	0.86	0.82	0.85	1.71
				(0.66-1.11)	(0.56-1.19)	(0.66-1.08)	(0.191)
Colon	503	473	249	0.84	0.74	0.81	10.97
				(0.72-0.97)	(0.61-0.89)	(0.70-0.93)	(0.001)
Rectum	301	260	167	0.85	0.93	0.88	0.74
				(0.71-1.02)	(0.75-1.17)	(0.74-1.04)	(0.390)
Controls	1,836	2,016	1,147	-	-	-	-

Association/effect

- Epidemiological studies measure associations
- Mathematical relationship between two variables
- Correlation between an exposure and disease
- Correlation \neq causation; only a small subset of correlated associations will be causal
- A causal relationship is when the change in one variable directly "effects" the results in another variable
- Epidemiology is used to study population-level effects and it is typically impossible to "look under the bed sheets" to see the causal mechanisms
- Data are imperfect and people interpret data based on preconceived beliefs
- If you start eating more pizza will your risk of cancer decrease?

Measures of association

- The strength of an association (magnitude) can indicate the relative likelihood of a true causal relationship
- A minimum of four pieces of data are required; these data are frequently entered into a 2×2 table for analysis
- The number exposed that developed disease
- The number exposed that did not develop disease
- The number not exposed that developed disease
- The number not exposed that did not develop disease
- Measures that can be calculated include
- Risk difference (measure of "impact")
- Risk ratio (RR)
- Prevalence ratio (PR)
- Odds ratio (OR)

Risk difference

- The difference of two risks (probabilities)
- Often referred to as the attributable risk (AR)
- Values range between -1 and 1 with 0 being the null value
- Calculated as: $[\mathrm{a} /(\mathrm{a}+\mathrm{b})]-[\mathrm{c} /(\mathrm{c}+\mathrm{d})]$
- Use only when the study design allows calculation of probabilities
- Interpreted as "how much of the total risk in the exposed group can be attributed to the exposure itself"
- A measure of impact rather than evidence for a causal association
- $\mathrm{RD}=(75 / 475)-(25 / 525)=0.11$

Pancreatitis

		Yes	No	$\begin{aligned} & 475 \\ & 525 \end{aligned}$
Overweight	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	75 (a)	$400{ }^{\text {(b) }}$	
		25 (c)	500 (d)	
		100	900	1000
			100	

Vaccine efficacy

- The fraction (or percent) of disease in the unvaccinated group that could be prevented through vaccination
- $\mathrm{VE}_{\%}=(\mathrm{Cl}$ in unvaccinated -Cl in vaccinated)

CI in unvaccinated

- Cumulative incidence (unvaccinated) $=3 / 5=0.6$
- Cumulative incidence (vaccinated) $=1 / 9=0.11$
- $\mathrm{VE}_{\%}=(0.6-0.11) / 0.6=0.81$ or 81% efficacious

Risk ratio (RR)

- Also referred to as the relative risk (RR)
- The ratio of 2 risks (probabilities)
- Values range from 0 to infinity with 1 being the "null" value
- Range is asymmetric around 1
- Interpreted as "how many more times likely is it to fall asleep in class if the professor is boring?"

Probability of falling asleep if boring
Probability of falling asleep if not boring

- The probability of falling asleep is X-times greater for students in classes with boring professors

Risk ratio (RR)

Fell asleep

Boring Professor	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Yes	No	$\begin{aligned} & 60 \\ & 40 \end{aligned}$
		$25^{\text {(a) }}$	$35{ }^{(b)}$	
		5 (c)	35 (d)	
		30	70	100

- Calculated as: [a/(a+b)] / [c / (c+d)]
- Only use when the study design allows the calculation of probabilities
- Boring must be defined (and measured) independent of whether or not students fall asleep in class (!)
- $R R=(25 / 60) /(5 / 40)=3.33$

Prevalence ratio (PR)

Pajamas

Boring	$\begin{aligned} & \text { Yes } \\ & \text { No } \end{aligned}$	Yes	No	$\begin{aligned} & 60 \\ & 40 \end{aligned}$
		$25^{(a)}$	35 (b)	
Professor		5 (c)	35 (d)	
		30	70	100

- Calculated the same as the RR: [a / (a+b)] / [c / (c+d)]
- Appropriate for analysis of data from cross-sectional studies
- Interpretation: "The prevalence of pajama-wearing students is X times higher in the class of a boring professor"
- Prevalence is a proportion but not a probability

Odds ratio (OR)

- The ratio of 2 odds
- Values range from 0 to infinity with 1 being the "null" value
- Range is asymmetric around 1
- Interpreted as "how many more times likely is it to fall asleep in class if the professor is boring?"

Odds of falling asleep if boring
$\overline{\text { Odds of falling asleep if not boring }}$

- The odds of falling asleep are X-times greater for students in classes with boring professors
- Measure of association for case-control studies because it's not possible to estimate risks directly from such studies

Odds ratio (OR)

Welcome to

Paired with Boring, Oregon, USA
Drive Safely
Drive Safely

Fell asleep

http://i2.cdn.turner.com/cnn/dam/assets/
120815025533-dull-and-boring-story-top.jpg

- Calculated as: [a/b] / [c/d]; [a/c]/[b/d] -or- [a*d]/ [c*b]
- When the outcome is rare in the source population (rule of thumb is 5% or less) then is a good approximation for the risk ratio $a /(a+b) \approx a / b$ when a is small relative to b (in source population) $c /(c+d) \approx c / d$ when c is small relative to d
- The OR is mathematically the same irrespective of how it is calculated and only the theoretical interpretation varies

P value

clideo.com

Significant associations

MK

Addapted by Kistler Kreatives with permission form xked.com

- A P-value is the probability of observing the current data, or more extreme, when there is no association
- P-values that are large are consistent with "no association" or no effect
- Small P-values suggest a true association and are considered "significant" when P < 0.05
- The purpose is to provide an objective criterion that does not vary from individual to individual

Chi-square distribution

Expert opinion elicitation

- Epidemiological studies collect data to estimate effects and risks of disease
- Data are often not available when performing risk assessments
- Probabilities therefore cannot be estimated directly and must be generated from expert opinion
- Can be generated via:
- Delphi method - a process used to arrive at a group opinion or decision by surveying a panel of experts. Experts respond to several rounds of questionnaires, and the responses are aggregated and shared with the group after each round.
- Personal interview
- On-line, mail questionnaire
- Extraction and summarization of information from the literature - metaanalysis
- Should account for uncertainty by modelling using distributions

Quantitative assessment

- Mathematical structure of the problem must be defined
- All inputs must be quantified
- Fixed
- Stochastic
- Statement of the acceptable level of risk
- An example might be a probability of less than 1 in a million
- Can be based on extrapolation from laboratory studies

Quantitative assessment

- Mathematical structure of the problem must be defined
- All inputs must be quantified
- Fixed
- Stochastic
- Statement of the acceptable level of risk
- An example might be a probability of less than 1 in a million
- Can be based on extrapolation from laboratory studies

Risk assessment on Foot-and-Mouth Disease (FMD) in pork from vaccinated animals
E. LOPEZ, A. DEKKER, M. NIELEN

Expert opinion

- Amount of virus in affected muscle
- The pH drop that is expected to occur in FMD microlesions relative to the surrounding muscle mass (eg. 50% drop would be $\mathrm{pH}=6$ if the rest of the muscle dropped to $\mathrm{pH}=5$)
- Mass of affected muscle tissue in each individual lesion
- Number of lesions per affected carcass
- Probability that an infected animal will develop such lesions
- Best guess:
- 95% sure that it is less than:
- 95% sure that it is greater than:

Modeling uncertainty

Input	Function	Density	Mean	Minimum	Maximum
Number of cattle within quarantine per cycle	Normal (147,26.6)		96.8	- ${ }^{\text {l }}$	+
Biosecurity at quarantine station (camps, double fence)	Beta(5.3,2)		0.73	0	1
Basic reproductive number for subclinical cattle	Exponential(1)		1	0	+
Effect of ante and postmortem inspection	Beta(5.6,30)		0.16	0	1
Trimmings (probability of LN)	Beta(2.3,23)		0.09	0	1
Concentration of FMDV (PFU/g) in LN	Normal($5,1.8$)		5.0	- ∞	+
Dose/infection constant; 'r'	Normal(4.1,1.8)		4.1	. ∞	$+\infty$

Expert opinion elicitation

	Cattle population	Proximity to a game reserve	Human population	Proximity to a road network	Proximity to rivers	Vaccine matching	Vaccination coverage	Vaccination interval	Cattle inspection	Permitted cattle movement into a village/location	Permitted cattle movement outside a village/location
Cattle population											
Proximity to a game reserve											
Human population											
Proximity to a road network											
Proximity to rivers											
Vaccine matching											
Vaccination coverage											
Vaccination interval											
Cattle inspection											
Permitted cattle movement into a village/location											
Permitted cattle movement outside a village/location											

Expert opinion elicitation

Thank you

