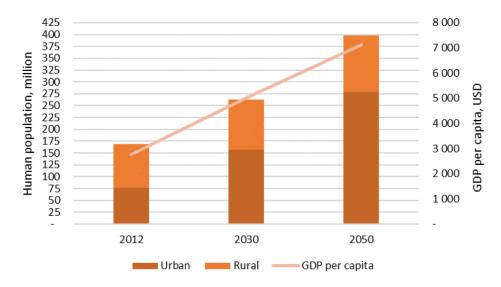


BIOSECURITY, SURVEILLANCE AND DIAGNOSIS OF ASF

Luka PD, Adedeji, AJ, Ifende IV, Jambol AJ, Muhammad M
NVRI, Vom


Situational analysis of the pig sector Nigeria

- High potential for growth due to rising demand for pork
- Driven by Population growth, Income-percapita,
- and urbanization (Satterthwaite et al. 2010)
- -The pig population is >7m (+222% by 2050)
- ▶ □ Pigs contribute to livelihoods and income to meet emergency needs and school fees

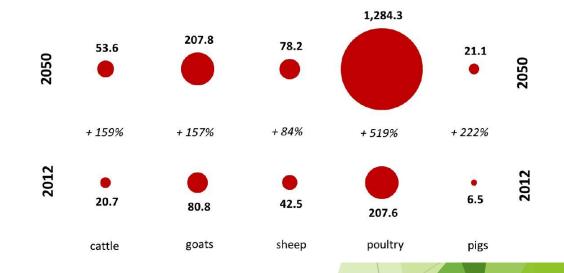


Fig. 1. Nigeria: Current and projected population and GDP per capita, 2012-2030-2050

Source: UN 2017, 2018; SSP, 2016

Fig. 5. Nigeria: Current and projected livestock population by species (million heads), 2012-2050

Background of Smallholder Pig Value Chains

- Smallholder pig value chain activities commenced in 2020
- Funding support: AU (ASF-RESIST), REDISSE
- Key objective: Identify participants and knowledge of the disease along the value chain
- Methodology
- Focus Group Discussion,
- ► Key Informant interview,
- Participatory Epid

- A questionnaire survey was conducted during a meeting with one hundred and thirty (130) pig farmers and other value chain actors between the 8 21st November 2020.
- The participants were from 20 pig-producing states of Nigeria (Lagos, Ogun, Osun, Oyo, Akwa Ibom, Rivers, Edo, Delta, Enugu, Imo, Abia, Ebony, Gombe, Taraba, Adamawa, Nasarawa, Niger, Benue, Plateau and Kaduna

state).

	5								
South					78				
	1								
								140	
North					66				
			36						
	0	20	40	60	80	100	120	140	160
			■ Semi-inte	nsive	■ Intensive	■ Ex	tensive		

	Frequency	Percent	2.5 %	97.5 %
(Intercept)			-906.931	108.564
Role				
Farmers	61	58.7		
Others	19	18.3	-0.579	1.779
Veterinarian	11	10.6	-0.167	3.441
Processor	7	6.7	-2.460	1.174
Transporter	4	3.8	-64.575	665.453
Traders	2	1.9	-4.350	2.515
Gender				
Male	83	<mark>79.8</mark>	-0.958	1.281
Female	21	20.2		
Education				
Tertiary	81	<mark>77.9</mark>	-3.293	0.760
Secondary	15	14.4	-2.999	1.383
Primary	8	7.7		
Total	104	100.0		

Figure 3: Barplot showing pig production systems practiced by pig farmers in northern and southern Nigeria

Farmers and value chain analysis

TABLE 3 ASSOCIATION OF ASF OUTBREAK WITH PARTICIPANTS' DEMOGRAPHICS

Variables	Not Experienced ASF No (%)	Experienced ASF No (%)	Total	χ2=	df	Cramer's V	Fisher's p
Role	-			4.915	5	0.217	0.447
Farmers	25 (7.6)	36(53)	61(58.7)				
Others	6(16.2)	13(19.4)	19(18.3)				
Processor	3(8.1)	4(6)	7(6.7)				
Traders	1(2.7)	1(.5)	2(1.9)				
Transporter	0(0)	4(6)	4(3.8)				
Veterinarian	2(5.4)	9(13.4)	11(10.6)				
	37(100)	67(100)	104(100)				
Gender	, ,			0.000	1	0.026	0.803
Female	8(21.6)	13(19.4)	21(20.2)				
Male	29(78.4)	54(80.6)	83(79.8)				
	37(100)	67(100)	104(100)				

Table 4 Participants' knowledge of signs and method of spread of ASF in the study area associated with the history of ASF outbreak (n= 104)

Variables	Not Experienced ASF No (%)	Experience d ASF No (%)	Total	χ2=	df	Cramer's V	Fisher's p
Knowledge of stake holders							
Know the cause of ASF							
No	22 (59.5)	34 (50.7)	56 (53.8)	0.420	1	0.084	0.517
Yes	15 (40.5)	33 (49.3)	48 (46.2)				
Total	37 (100)	67 (100)	104 (100)				
Know the Signs of ASF				18.980	1	0.451	0.000
No	18 (48.6)	6 (9)	24 (23.1)				
Yes	19 (51.4)	61 (91)	80 (76.9)				
Total	37 (100)	67 (100)	104 (100)				
Know the breed affected				0.804	2	0.088 ·	0.775
Cross breed	24 (64.9)	40 (59.7)	64 (61.5)				
Exotic	2 (5.4)	7 (10.4)	9 (8.7 0				
Local	11 (29.7)	20 (29.9)	31(29.8)				
Total	37 (100)	67 (100)	104 (<u>100</u>)				

Research Article

Biosecurity breaches on pig farms is associated with the history and spread of African Swine Fever in Nigeria

Rebecca Weka, Isioma Ifende, Ayuba Sini, Philip Ayuba, David Tsokar, and 7 more

This is a preprint; it has not been peer reviewed by a journal.

https://doi.org/10.21203/rs.3.rs-2434973/v1
This work is licensed under a CC BY 4.0 License

ORIGINAL ARTICLE

WILEY

Diversity and emergence of new variants of African swine fever virus Genotype I circulating in domestic pigs in Nigeria (2016–2018)

C. Masembe¹ | A. J. Adedeji^{1,2} | A. R. Jambol^{1,2} | R. Weka² | V. Muwanika³ |

P. D. Luka²

GENOME SEQUENCES

July 2021 Volume 10 Issue 26 10.1128/mra.00350-21 https://doi.org/10.1128/mra.00350-21

First-Time Presence of African Swine Fever Virus Genotype II in Nigeria

Article

Characterization of a Novel African Swine Fever Virus p72 Genotype II from Nigeria

TABLE 1 Distribution of African swine fever outbreaks, samples collected, laboratory results in eight states of Nigeria from 2016 to 2018

Year	State	No. of outbreaks	Samples collected	Positive samples by PCR
2016	Benue	1	2	1
	Kaduna	1	2	1
	Plateau	3	10	2
2017	Abia	1	1	1
	Enugu	1	2	2
	Imo	1	2	2
2018	Benue	11	38	11
	Lagos	1	2	2
	Plateau	16	47	14
	Taraba	1	4	2
Total		37	110	38

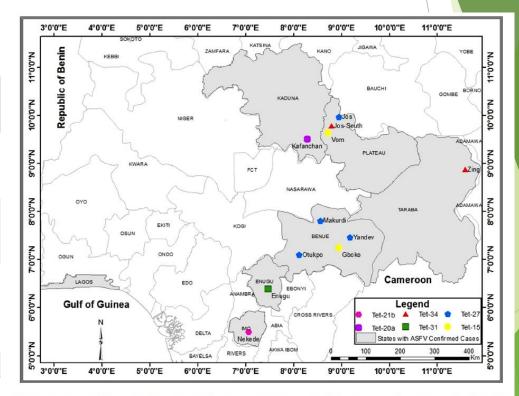
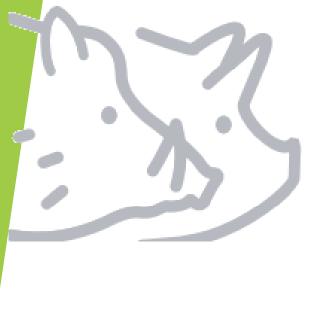



FIGURE 1 Map of Nigeria showing the distribution of African swine fever virus genotype I variants recovered from outbreaks between 2016 and 2018

SURVEILLANCE AND DIAGNOSTIC CAPABILITIES

Received: 13 January 2022

Revised: 8 February 2022

Accepted: 16 February 2022

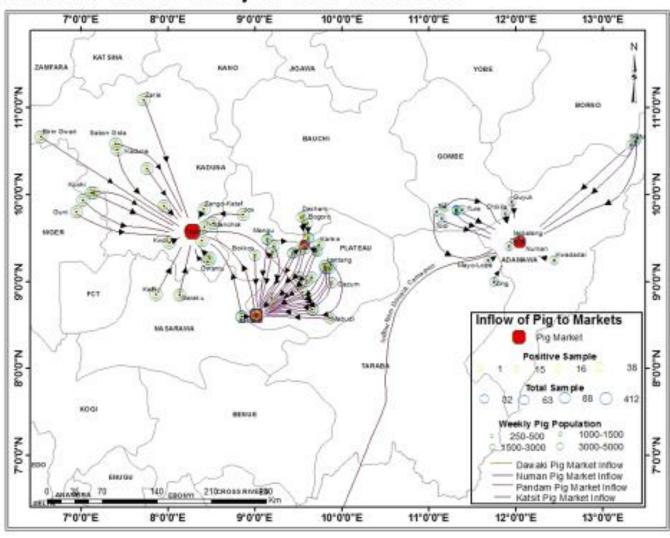
DOI: 10.1111/tbed.14483

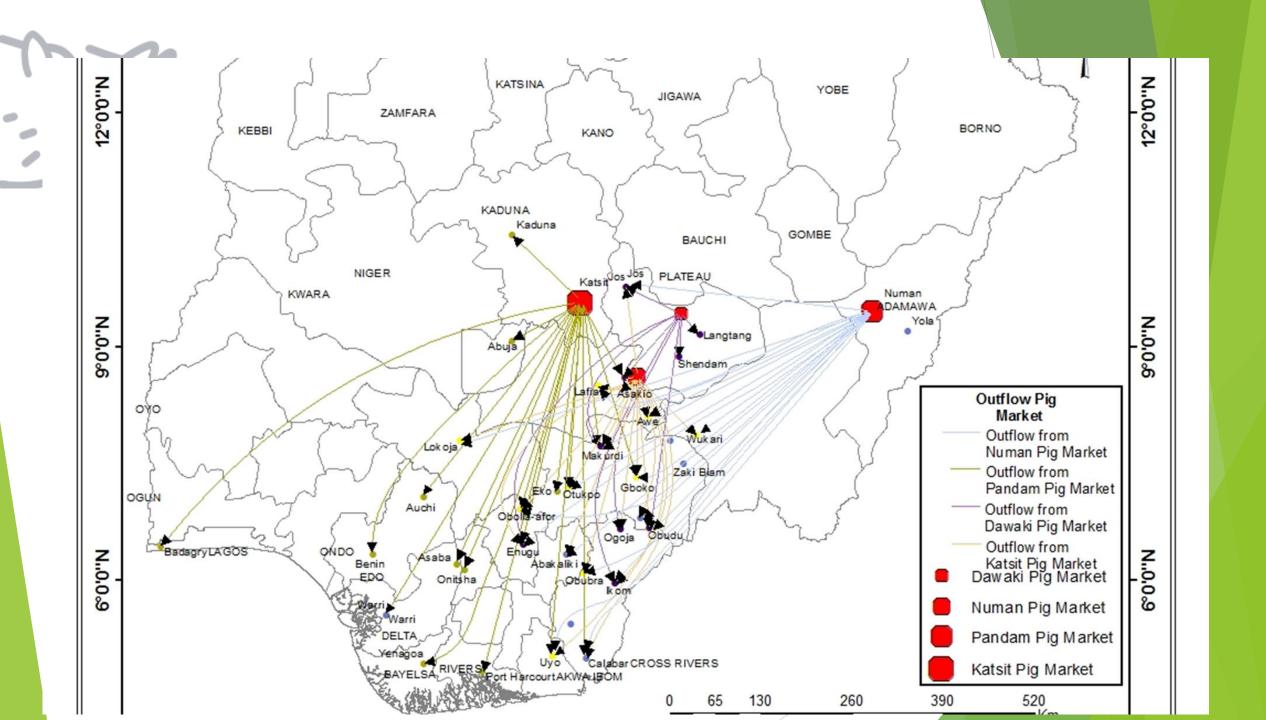
ORIGINAL ARTICLE

Live pig markets are hotspots for spread of African swine fever virus in Nigeria

Result of surveillance

- ▶ total of 217 sera sampleswere analysed using ID Screen ASF Indirect
- (IDVet, Grabels, France),
- Seroprevalence of 6.9% (16/217),
 - ▶ Dawaki 5.6% (1/18),
 - ► Katsit 4.2% (7/167),
 - Numan 27.3% (6/22) and
 - Pandam 10% (1/10).
- A total of 613 samples were collected comprising
 - ▶ 355 tissue and 258 whole blood samples
 - Overall positivity of 10.77% (66/613).


 TABLE 1
 Selected live pig markets located in Nigeria where this study was carried out


Market	Village/LGA	State	Market days	Presence of pig slaughter slab within/by a perimeter fence of market
Dawaki pig market	Dawaki/Kanke	Plateau	Thursdays	Yes
Katsit pig market	Katsit/Zangon/Kataf	Kaduna	Thursdays	Yes
Numan pig market	Numan/Numan	Adamawa	Tuesdays	No
Pandam pig market	Pandam/Quan Pan	Plateau	Mondays	No

WILEY ADEDEJI ET AL.

V. . . .

Live animal market/Movement

Rapid and early diagnostic studies

- Cells and Virus:
 - PLC/Vero, (EURL ASF protocol)
 - ASFV NGR/LGT/2015, 10% TS in PSGA, incubated 4oC onvernight, filtered using 0.45 μm
- ► First Experimental infection:
- ➤ Six 8-weeks old cross-breed large white pigs that were antibody and antigen negative by indirect-ELISA (ID Screen® African Swine Fever) and PCR, respectively were used for this study.
- 4 were inoculated with ASFV and 2 kept as control (1ml of 102 TCID50)
- ▶ Blood, ocular and nasal swabs, weight and temperature were collected and viremia assessed using molecular technique.
- clinical signs were observed and survivor euthanized.

- Second Experimental infection: 6wks old piglet and one as a control
- DNA Extraction and conventional PCR/Real-Time PCR
- Enzyme-linked Immunosorbent Assay (ELISA)
- Scoring of ASF symptoms and pathological findings at autopsy
- Immunoblotting assay

Result

Viremia	Death	Death	Sero-conversion	Euthanized
2dpi (2pigs)	—— 8-9dpi			
3 dpi (2pigs)		21dpi		
6 dpi (1pig)	9dpi			
10 dpi (1 pig)			26dpi	_75dpi

Pig/ID	Viremia	C-PCR	DB-PCR	ELISA
45	2 dpi	Positive	Positive	Negative
46	6 dpi	Positive	Positive	Negative
121	3 dpi	Positive	Positive	Negative
122	10 dpi	Positive	Positive	Positive
123	Control	Negative	Negative	Negative
124	Control	negative	Negative	Negative
125	3 dpi	Positive	Positive	Negative
126	2 dpi	Positive	Positive	Negative

Fig.1. Percentage of surviving animals. Group of pigs (6) were challenged intramuscularly (IM) (10² TCID50/ml) with LGT_15 ASFV isolate, genotype I. Days post-challenge (x-axis) and percent survival (y-axis).

Federal Republic of Nigeria Official Gazette

No. 70

Lagos - 13th April, 2022

Vol. 109

Government Notice No. 62

The following is published as supplement to this Gazette:

Act No.

Short Title

Page

12 Animal Diseases (Control) Act, 2022 ..

A269-351

NATIONAL STRATEGY FOR THE CONTROL OF AFRICAN SWINE FEVER IN NIGERIA, MAY, 2020

REGIONAL STRATEGY FOR THE CONTROL OF AFRICAN SWINE FEVER IN AFRICA

Accra, 2017

GF-TADS Africa

GLOBAL FRAMEWORK FOR THE PROGRESSIVE CONTROL OF TRANSBOUNDARY ANIMAL DISEASES

