

BIOSECURITY IN ANIMAL
PRODUCTION

Prof. Jeroen Dewulf

Bio-what ?

BIOSECURITY

The application of a set of **management**, **behavioural** and **physical** measures designed to reduce the risk of **introduction**, **establishment** and **spread** of pathogenic agents **to**, **within and from** an animal population.

EXTERNAL biosecurity

= reduce introduction

INTERNAL biosecurity = reduce spread

WHAT IS BIOSECURITY?

Animal + Animal

Human - Animal

One Health

BIOSECURITY is (should be) the basis of any disease control program

Is biosecurity important?

1) Separation of infectious and susceptible animals

→ avoid both direct and indirect contact! (all-in/all-out, working lines, hospital pen, ...)

- Dependent upon herd situation (status, type,...)
- Perform well and consequent

	Direct contact	Indirect contact									
		People	Semen	Manure	Domestic/feral animals	Rodents	Insects (Vectors)	Aerosol	Animal feed	Water	Fomites
Actinobacillus pleuropneumoniae	Х				Х			Х		Х	Х
Bordetella bronchiseptica	Х				Х	Х	Х	Х		Х	Х
Brachyspira hyodysenteriae	Х	Х		Х	Х	Х	Х		Х	Х	Х
Brucella suis	Х	Х	Х	Х	Х		Х	Х	Х		
Classical swine fever virus	Х	Х	Х	Х	Х		Х	Х	Х		Х
Clostridium perfringens	Х			Х			Х	Х		Х	Х
Erysipelothrix rhusiopathiae*	Х			Х	Х	Х			Х	Х	Х
Escherichia coli	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
Foot-and-mouth disease virus	Х	Х	Х	Х	Х			Х	Х	Х	Х
Haemophilus parasuis*	Х				Х						
Lawsonia intracellularis*	Х			Х	Х	Х	Х				Х
Leptospires	Х	Х	Х		Х	Х				Х	
Mycoplasma hyopneumoniae	Х	Х			Х			Х		Х	Х
Pasteurella multocida	Х	Х		Х	Х			Х		Х	Х
Porcine circovirus type 2*	Х		Х	Х	Х	Х	Х		Х	Х	
UNIVERSITY									•		.ugent

	Direct contact	Indirect contact									
		People	Semen	Manure	Domestic/feral animals	Rodents	Insects (Vectors)	Aerosol	Animal feed	Water	Fomites
Porcine Epidemic diarrhea virus*	Х	Х		Х	Х			Х	Х		Х
Porcine parvovirus	Х		Х	Х	Х	Х				Х	Х
Porcine Reproductive and Respiratory Syndrome virus	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
Pseudorabies virus	Х		Х	Х	Х	Х	Х	Х		Х	Х
Salmonella spp.	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х
Streptococcus suis	Х	Х		Х	Х		Х	Х		Х	Х
Swine influenza virus	Х	Х		Х	Х			Х			
Swine vesicular disease virus	Х	Х	Х	Х	Х			Х	Х		Х
Transmissible gastroenteritis virus	Х	Х		Х	Х		Х				Х

GHENT

UNIVERSITY

Biosecurity in animal practice and Veterinary Medicine., 2018

2) Not every transmission route is equally important

3) Reduction of the general infection pressure

 \rightarrow breaking the infection cycle, reducing the burden on the immune system \downarrow

4) Size matters

5) Frequency matters

- 'Thousand times a small chance becomes a large chance'
 - Risk transmission route (p)
 - Frequency transmission route (n)
- $P = 1 (1-p)^n$
 - p= 0.1% (1 out of 1000)
 - n= 52 (e.g. weekly)
- **5,06%**= 1 − (1-0.001)⁵²

Biosecurity = complex

- No protocol suitable for every herd
- Balance biosecurity management
- Tool?

→ Biosecurity scoring system

Different animal species, different languages

Free online application: www.biocheckgent.com

Risk based scoring system

Weighted scores

Based on scientific research

Risk for transmission: direct vs. indirect contact

GHENT UNIVERSITY

BIOCHECK.UGENT

ID: 20388/691653/v/2_1/F

Entry date: 2019-03-10 13:22:08 Identification: PIG

Nr	Description	Score	Country average	Global average
Exte	nal biosecurity			
Α	Purchase of animals and semen	100 %	88 %	89 %
В	Transport of animals, removal of manure and dead animals	41 %	70 %	70 %
С	Feed, water and equipment supply	27 %	38 %	50 %
D	Personnel and visitors	41 %	64 %	68 %
Е	Vermin and bird control	50 %	64 %	67 %
F	Environment and region	60 %	53 %	64 %
	Subtotal External biosecurity:	57 %	66 %	70 %
Inter	nal biosecurity			
Α	Disease management	40 %	56 %	67 %
В	Farrowing and suckling period	64 %	59 %	56 %
С	Nursery unit	36 %	65 %	66 %
D	Fattening unit	N/A	72 %	67 %
Е	Measures between compartments and the use of equipment	39 %	44 %	48 %
F	Cleaning and disinfection	20 %	48 %	59 %
	Subtotal Internal biosecurity:	38 %	55 %	58 %


```
48 %
```

61 %

Quantification of biosecurity status on farm level

Comparing scores between different herds
Comparing scores between different countries
Comparing scores in time

L Taking different risks into account

Worldwide usage of Biocheck.UGent

The Biocheck.UGent has already been used **54060** times to evaluate the biosecurity in farms worldwide.

→ Worldwide statistics

Quantification of biosecurity status on farm level

Comparing scores between different herds
Comparing scores between different countries
Comparing scores in time

L Taking different risks into account

SURVEYS

External and internal biosecurity

Different subcategories

Multiple questions per subcategories

A. Purchase

1. What is the duration of one production cycle (including the empty period) on your farm (in <u>months</u>)? *(required)*

..... months

2. What is the maximum duration between the start and finalisation of filling one stable for one production cycle in <u>weeks</u>? *(required)*

One stable is equal to one compartment in which the animals can't come into contact with animals from another compartment.

..... weeks

3. How many <u>transports</u> does it take on average to fill one compartment for one production cycle? *(required)*

One compartment is equal to one unit in which the animals can't come into contact with animals from another compartment.

..... transports

4. Are your cattle always bought from the same original source (during the past 2 years)? *(required)*

The same original source: the same farm of origin, where the cattle are born.

Select one option. • Yes • No, I buy from the veal company, salesman or on the market • No, I buy from multiple sources

Available in multiple languages (dependent on animal species)

GHENT UNIVERSITY

BIOCHECK.UGENT

ID: 20388/691653/v/2_1/F

Entry date: 2019-03-10 13:22:08 Identification: PIG

Nr	Description	Score	Country average	Global average
Exte	nal biosecurity			
Α	Purchase of animals and semen	100 %	88 %	89 %
В	Transport of animals, removal of manure and dead animals	41 %	70 %	70 %
С	Feed, water and equipment supply	27 %	38 %	50 %
D	Personnel and visitors	41 %	64 %	68 %
Е	Vermin and bird control	50 %	64 %	67 %
F	Environment and region	60 %	53 %	64 %
	Subtotal External biosecurity:	57 %	66 %	70 %
Inter	nal biosecurity			
Α	Disease management	40 %	56 %	67 %
В	Farrowing and suckling period	64 %	59 %	56 %
С	Nursery unit	36 %	65 %	66 %
D	Fattening unit	N/A	72 %	67 %
Е	Measures between compartments and the use of equipment	39 %	44 %	48 %
F	Cleaning and disinfection	20 %	48 %	59 %
	Subtotal Internal biosecurity:	38 %	55 %	58 %


```
48 %
```

61 %

Review

Can improved farm biosecurity reduce the need for antimicrobials in food animals? A Scoping Review

Pankaj Dhaka ^{1,2,*}, Ilias Chantziaras ^{1,*}, Deepthi Vijay ³, Jasbir Singh Bedi ², Iryna Makovska ¹, Evelien Biebaut ¹ and Jeroen Dewulf ¹

Species distribution

Study types

Two studies included both pigs and poultry farms

Association between farm biosecurity and AMU

• 51.8% (14/27) studies

↑ farm biosecurity : ↓ AMU

• 18.5% (5/27) studies

↑ farm management : ↓ AMU

• 2 studies

↑ coaching & awareness: ↓ AMU

• 1 study

↑ biosecurity : ↓ AMU : ↑ farm economics

 $\widehat{}$

5 studies: farm biosecurity & AMU → Uncertain or spurious association

"An ounce of prevention, is worth a pound of cure" - Benjamin Franklin -

Jeroen Dewulf Full Professor

FACULTY OF VETERINARY MEDICINE GHENT UNIVERSITY

- E Jeroen.dewulf@ugent.be biocheck@ugent.be
- T +32 9 264 75 43

	Prof_vet_epi_ugent
f	Ghent University
¥	@jkdewulf
in	jkdewulf

www.biocheck.ugent.be

www.ugent.be

