

Diagnostic challenges with regards to CBPP and what the reference laboratories can do to help

C. Marobela-Raborokgwe

8th June 2023

- Introduction CBPP diagnostic tests
- Challenges with the tests
- Mandate of an WOAH Reference labs
- What the WOAH reference Labs can do to assist
- Conclusion
- Acknowledgements

Contagious Bovine Pleuropneumonia (CBPP)

- CBPP is a highly contagious and infectious cattle lung disease, and is one of the most serious transboundary animal diseases in Africa
- CBPP is caused by a bacterium called Mycoplasma mycoides subsp mycoides
- CBPP is widespread in Africa, and regionally eccurs Namibia, Zambia and Angola

CBPP surveillance

Disease surveillance

Passive and active

Disease control measures undertaken

Sampling

Results sent to customer

Samples tested at the Lab

- 1. Tests for detection of *Mmm*
- Culture and isolation

Biochemical followed by Immunochemical tests

- Molecular identification and typing PCR and genotyping
- 2. Tests for detection of immune response Complement fixation test (CFT), competitive Enyme Linked Immunosorbent Assay (cELISA), munoblotting test(IBT)

Challenges with Isolation and PCR

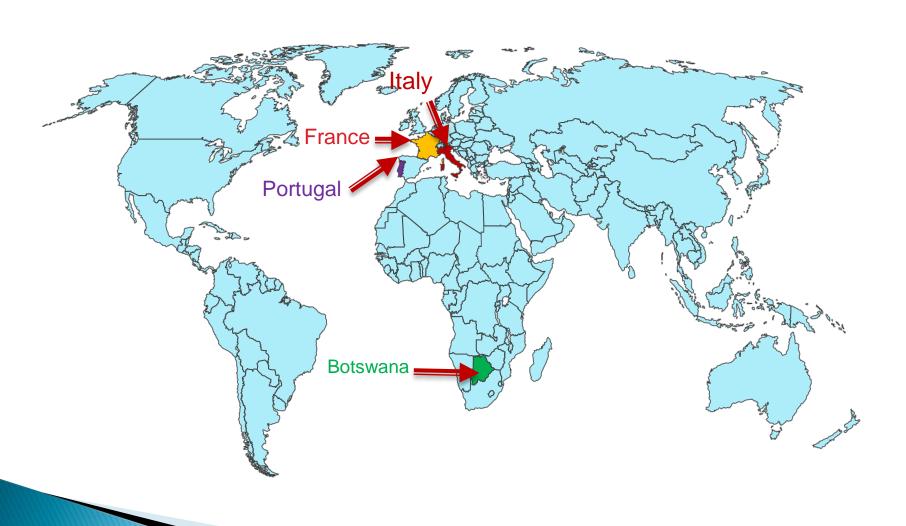
- Good quality samples needed
- False negatives with isolation presence varies with the stage of development of the lesions

And in animals treated with antibiotics

- Biochemical immunochemical tests -laborious
- Labs use PCR tests that are more rapid, sensitive, specific and easy to use
- Challenges of contamination with PCR tests

Challenges with serological tests

- Lack sensitivity (false negatives) and specificity (false positives)
- CFT laborious and difficult to execute
- Difficult to source critical reagents like antigen, positive and negative sera
- Lack of and expensive Proficiency testing for quality assurance and test accreditation


Serological tests

p	Test	Sensit ivity	Specif icity	Advantages	Disadvantages
	CFT	63.8%	98%	Can detect all sick animals with acute lesions	Can miss small proportion of animals in the early stages or animals with chronic lesions
	cELIS A	Same as CFT	99.8%	Can detect antibodies for longer periods	
				Easier to perform	
				Can be obtained commercially	Critical shortage of kits currently
	IBT	Same	More specif ic	Used where there are doubtful CFT positives	Laborious Difficult to standardise

Purpose							
Method	Populat ion freedo m from infectio n	Individual animal freedom from infection prior to movement	Contribution to eradication policies	Confirmatio n of clinical cases	Prevalence of infection surveillance	Immune status in individual animals or populations post vaccination*	
	Detection of the agent (<i>Mmm</i>)						
In-vitro culture isolation (followed by species identification tests)	+	_	_	+++	-	_	
Direct molecular test (PCR)	-	-	-	++	-	-	
Detection of immune response							
CFT	+++	++	+++	++	+++	-	
Immunoblotting	++++	++	++	++	++	-	
C-ELISA	+++	++	+++	++	+++	-	

What WOAH reference labs can do to help

Mandate of WOAH Reference labs

- To use, promote and disseminate diagnostic methods validated according to WOAH Standards
- To recommend the prescribed and alternative tests or vaccines as WOAH Standards
- To develop reference material in accordance with WOAH requirements, implement and promote the application of WOAH Standards

Mandate of an WOAH ref lab

- To carry out and/or coordinate scientific and technical studies in collaboration with other laboratories, centres or organizations
- To collect, process, analyse, publish and disseminate epizootiological data relevant to CBPP
- To provide scientific and technical training for personnel from WOAH Member Countries

Mandate of CBPP ref lab

- The maintain a system of quality assurance, biosafety and biosecurity relevant to CBPP
- To organize and participate in scientific meetings on behalf of the WOAH
- To establish and maintain a network with other WOAH Reference Laboratories for CBPP and organize regular inter-laboratory proficiency testing to ensure comparability of results

Mandate of WOAH Ref lab

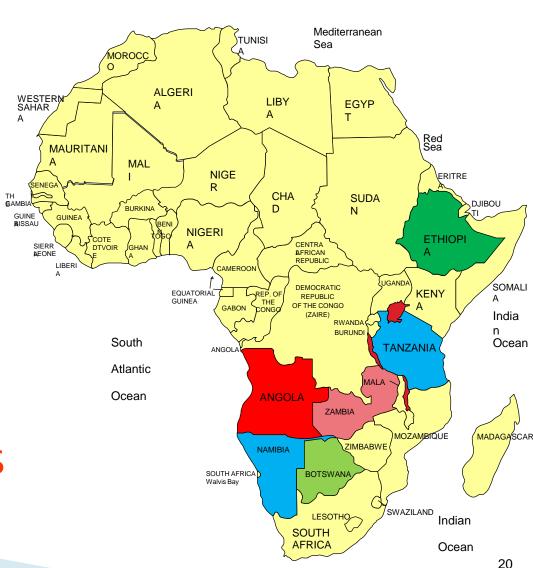
- To store and distribute to national laboratories biological reference products and any other reagents used in the diagnosis and control of CBPP
- To develop, standardize and validate according WOAH Standards new procedures for diagnosis and control of CBPP

Mandate of WOAH ref lab

- To organize inter-laboratory proficiency testing with laboratories for CBPP to ensure equivalence of results
- To place expert consultants at the disposal of the WOAH

- To provide diagnostic testing facilities, and, where appropriate, scientific and technical advice on CBPP control measures to WOAH Member Countries
- On an annual bases WOAH reference Labs submit a report to indicating the progress made with regards to implementation of the terms of reference

- BNVL became an WOAH ref lab for CBPP in 2012 after a successful twinning project with IZS
- This has brought the expertise and provision of scientific support to the region
- As an WOAH ref lab BNVL is mandated to carry out certain activities to assist member countries



Role of BNVL on CBPP in the region

What BNVL has been doing

Coordinating regional networks

- BNVL is Coordinating a regional Scientific network on CBPP:
- Angola, Botswana, Namibia, Tanzania, Ethiopia and Zambia
- Sponsored by AU-IBAR and ERFAN
- In collaboration with IZS

CBPP meeting Namibia 2015

Participants 2015 Namibia

Activity	Date	Venue
Start up meeting and development of SOPs	November 2014	Livingstone – Zambia
Training on CBPP tests	May 2015	BNVL
Setting up of tests in Angola	May 2015	Humpata- Angola
Exchange of scientific personnel (recognition of clinical CBPP)	September 2015	CVRI – Zambia
Organisation of ring trials	September 2015	BNVL
Testing for CBPP surveillance	All year	Member countries
Final meeting of project	November 2015	Namibia
Production of a Good Practice Paper	February 2016	Gaborone
CBPP control strategy	June 2016	Angola

To use, promote and disseminate diagnostic methods validated according to WOAH Standards – BNVL

- Agent detection: Mmm isolation and detection by Polymerase Chain Reaction (PCR)
- Antibody detection: Complement Fixation Test (CFT) and cELISA
- These tests have been standardised for the subregion in 2013

Production of reagents

- The main reagent produced is CBPP CFT antigen
- This is produced, standardised and delivered by WOAH reference labs

CBPP CFT antigen

Production of reagents

- Freeze dried
- Quality assured
- Supplied CBPP CFT antigen to CVRI – Zambia, CVL– Namibia, OVI – South Africa and Humpata Lab in Angola

Distribution of antigen

CBPP CFT antigen

Provision of diagnostic testing

- BNVL has carried out diagnostic testing for Countries in the region
- CFT for CBPP done on serum samples from Namibia, Eswatini and Zambia
- Isolation of Mmm for Angola

Provision of technical training

- In September 2011BNVL visited CVRI in Zambia, demonstrated CFT and quality assurance, test accredited in 2017
- In May 2015 BNVL visited The Humpata Lab in Lubango, Angola, assisted in setting up CFT and isolation for *Mmm*
- BNVL has trained technicians from Uganda,
 Malawi, Mali, Mozambique, Ethiopia, Lesotho,
 Tanzania, Namibia, Angola, Zambia, Nigeria

Epidemiological surveillance training in Angola - 2015

Botswana and Angola vets sampling in Angola

Sampling in Angola

Setting up of tests in Angola – 2015

Bench training on CFT and cELISA by BNVL

Bench training on isolation of *Mmm* by BNVL

Bench training on CBPP tests at BNVL 2015

Participants from Namibia, Angola, Zambia, Kenya BNVL has trained technicians from Uganda, Malawi, Mali, Mozambique, Ethiopia, Lesotho through IAEA sponsorship (2 -3 months)

Training on CBPP pathology in Zambia August 2015

Participants 2015

Training on recognition of CBPP lesions

CBPP pathology training - Zambia

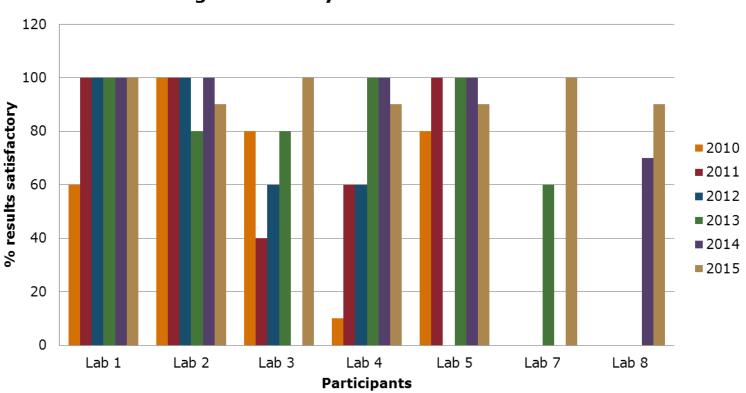
Organisation of ring trials

BNVL has been organising inter-laboratory ring trials with regional labs since 2007

Tests being CFT and PCR
 Participating Labs are BNVL, CVRI-Zambia,
 CVL-Namibia, OVI - South africa,

The purpose of which is to determine regional Labs' capability to conduct CBPP diagnostic tests (CFT and PCR) and to ensure equivalence of results

- To monitor the technical expertise of laboratories testing for CBPP
- An important quality control element & part of lab quality assurance programme
 - Assess own capabilities
 - To check performance of analysts
 - Ensure comparability of results


BOTSWANA Ring trials conducted Our pride, your destination

Year	Test	Distribution	Participants (number of labs)
2010	CFT	1 st	BNVL, IZS, CVL-NAM, OVI & CVRI (5)
2011	CFT PCR	2 nd 1 st	BNVL, IZS, CVL-NAM, OVI & CVRI (5)
2012	CFT	3rd	BNVL, IZS, CVL-NAM, OVI & CVRI (5)
2013	CFT PCR	4 th 2 nd	BNVL, IZS, CIRAD, CVL, OVI & CVRI (6)
2014	CFT PCR	5 th 3 rd	BNVL, IZS, CVL, OVI, CVRI, MoALF (6)
2015	CFT PCR	6 th 4 th	BNVL, IZS, CVL, OVI, CVRI, MoALF, INIAV, ISRAILNERV, LCH, CVL-ZIM & LANAVET (11)
2022	CFT	7 th	BNVL, CVL, CVRI, OVI, IZS (5)

CFT results

Table showing satisfactory results from 2010 to 2015

Conclusion

- Technical capacities of the different laboratories can be strengthened through the various trainings conducted by WOAH Ref labs
- Use of WOAH protocols, antigen and positive reference sera for quality assurance of CBPP diagnostic tests
- The ring trials conducted after the use of harmonised protocols and trainings showed satisfactory results, this indicating the labs capabilities for CBPP diagnosis have improved.
- The outcome of this would be improved CBPP diagnostic capacity and control in the region.

Conclusion

- BNVL as a WOAH reference lab can assist the regional labs to ensure early detection and warning systems for effective CBPP control
- I would like to encourage the regional labs to continue working with BNVL in their fight against CBPP, as the fight is for all of us.
- Eradication and control of CBPP would increase animal productivity

Food security - Zero hunger

UN Sustainable
Development goal 2

Food for all

Acknowledgement

I would like to thank the following:

- WOAH for the twinning project which resulted in a CBPP ref lab in the region.
- The governments of Botswana, Angola, Namibia, Zambia for their concerted effort in the fight against CBPP.
- Our Technical partner IZS for it's support and mentorship.
- Everybody here for listening

THANK YOU