

Rabies diagnostic techniques/methods and surveillance in animals.

Claude Sabeta, PhD

23 September 2020

OIE Rabies Reference Laboratory

Onderstepoort Veterinary Research, Pretoria, Republic of South Africa

Presentation outline

- Introduction rabies burden
- Lyssavirus genus
- Rabies testing in RSA
 - Other regional countries
- Sample submissions
- Test methods commonly used in rabies testing on the continent
 - Back up and confirmatory tests available
- Rabies testing in RSA 2018
- Summary of test methods (advantages/disadvantages)

Rabies is a neglected tropical disease and poses a veterinary & public health threat

- Commonly encountered in dog populations in endemic regions of Asia and Africa
 - the burden of the disease is highest here.
- At least 60 000 human deaths occur annually (India alone – 20 000 deaths annually).
 - 50% of the human deaths are children under 15 years of age
- Under-reporting of human cases due to limited:
 - Laboratory capability
 - Qualified personnel
 - Medical and veterinary infrastructure

Lyssaviruses are divided into 3 phylogroups

- Pathogenicity –
 intracerebral (i,.c) and
 intramuscular (i.m.)
- Cross protection: current vaccines based on phylogroup I viruses

Rabies testing in South Africa ...

3 designated labs (Gauteng (2) and KZN

Animal diagnostic laboratories at Onderstepoort,

- Allerton (Pietermaritzburg)
- the National Health Laboratory Service (NHLS)
- Immunohistochemistry (IHC) is conducted at
 Pathology (Faculty of Veterinary Sciences, UP)

Specimen submissions

Specimen processing and rabies testing on central nervous tissues ...

The FAT and dRIT are the first line test methods approved by both the OIE/WHO for lyssavirus antigen in brain and central nervous tissues.

- Brain-impression smears fixed in cold acetone (formalin masks the RABV antigen).
- Stained with a polyclonal conjugate (Mok + ERA)
- Viewing slides under a fluorescent microscope
- Quickest and most reliable method for both diagnostic and research purposes
- The sensitivity of the FAT depends on the <u>quality</u> of the specimen and the degree of <u>autolysis</u> of the brain tissue.

Dean, D.L., Abelseth, M.K. & Atanasiu, P. (1996). The fluorescent antibody test. In: Laboratory Techniques in Rabies (F.X. Meslin, M.M. Kaplan & H. Koprowski, eds). Geneva, WHO, 88-95.

Rabies diagnosis with the FAT/dRIT gives an all-or-nothing result

Biological tests for rabies diagnosis

- Suckling mice
- 10% brain tissue suspension in cell culture media/PBS, pH 7.2
- Intra-cranial challenge
- Mice monitored for 28 days [Seo's thesis].
- RTCIT has replaced MIT in many laboratories.

Rabies tissue culture isolation (RTCIT) on neuroblastoma cells (ATCC)

Determine origin of outbreaks/relationships

Molecular (PCR) now recommended for confirmatory diagnosis of rabies

Rabies diagnosis in South Africa (Onderstepoort)-2018 1

Origin	Negative	Positive	Total
GP	113	3*	116
FS	39	12	51
LP	52	37	89
MP	97	24	121
NC	13	2	15
NW	58	46	104
EC	5	5	10
WC	2	0	2
KZN	10	6	16
Tanzania	0	2	2
Namibia	10	19	29
Malawi	0	1	1
	399	157 [39.3%]	556

Rabies diagnosis in South Africa (Onderstepoort)- 2018 2

	GP	NW	EC	FS	LP	MP	NC	WC	KZN	MALAWI	NAMIBIA	TANZANIA	
CANINE	54	26	4	12	54	60	5	0	7	1	8	2	233
FELINE	17	9	1	2	5	14	0	0	5	0	2	0	55
LIVESTOCK	18	43	1	13	10	16	1	1	0	0	8	0	111
WILDLIFE	26	26	4	24	21	33	9	2	3	0	11	0	159
UNKNOWN	1	0	0	0	0	0	0	0	2	0	0	0	3
UNSUITABLE	0	0	0	0	0	0	1	0	0	0	0	0	1
	116	104	10	51	90	123	16	3	17	1	29	2	562

Canine – 41.5% Feline - 9,7% Livestock – 19.8% Wildlife - 28,3%

Problems encountered in rabies testing

Sample numbers	Direct fluo antibody to		dRIT	RT-PCR (lys-550B)	Real time qPCR (all pos	
	Nig	RSA			except 1)	
1-23	+	+	+	+	+	
265	-	-	+	+	+	
271	-	-	+	+	+	
273	-	-	+	+	+	
276	-	-	+	+	+	
277	-	-	+	+	+	7
278	-	-	+	+	+	N.

Importance of rabies diagnosis to animal surveillance

- Confirm diagnosis of suspect or clinical cases (includes confirmation of positive screening test).
- Contribute to the demonstration of freedom from infection in a defined population (country/zone/compartment/herd) (prevalence apparently zero): "Free" with and/or without vaccination,
- Re-establishment of freedom after outbreaks
- Certify freedom from infection or presence of the agent in individual animals or products for trade/movement purposes.
- Contribute to the eradication of disease or elimination of infection from defined populations.
- Estimate prevalence of infection or exposure to facilitate risk analysis (surveys, herd health status, disease control measures).
- Determine immune status of individual animals or populations (post-vaccination).

Summary - test methods <u>available</u> for the diagnosis of rabies and their purpose

Method	Population freedom from infection	Contribution to eradication policies	Confirmation of clinical cases	Prevalence of infection - surveillance	Immune status in individual animals or populations post vaccination
DFA	+++	+++	+++	+++	n/a
dRIT	+++	+++	+++	+++	n/a
Cell culture (virus isolation)	+	+++	+++	+++	n/a
MIT (virus isolation)	n/a	+++	+++	+	n/a
Conventional RT- PCR (RNA detection)	+++	+	+++	+++	n/a
Real-time PCR (RNA detection)	+++	+++	+++	+++	n/a

Test	Target	Turnaroun d time	Advantages	Disadvantages
Fluorescent antibody test (FAT)	Virus antigen	2-3 hours	RapidHigh sensitivity and specificity	 Expensive conjugate Requires an ultraviolet light microscope Can be difficult to interpret results
Direct rapid immunohistochemical test (dRIT)	Virus antigen	2-3 hours	RapidRequires only a light microscope	Can be difficult to interpret results
Rabies tissues isolation test	Live virus	4-6 days	 Enables propagation of virus for characterisation 	 Requires specialist facilities and operator expertise Long turnaround time
Mouse inoculation test (MIT)	Live virus	Up to 20 days	 Enables propagation of virus for characterisation 	 Requires specialist facilities and operator expertise Very long turnaround time Ethical issues owing to the use of in vivo models
Conventional RT-PCR	Viral nucleic acid	3-4 hours	 Rapid High sensitivity and specificity Amplicons can be used for genetic characterisation 	 Requires specialist equipment Potential for contamination
Real-time PCR	Viral nucleic acid	2-3 hours	 Rapid High sensitivity and specificity One-tube systems reduce contamination risks 	 Requires specialist equipment Potential for contamination Amplicons not useful for genetic characterisation

Thank you for listening

