

Third GF-TADs Regional Roadmap

Meeting for Eastern Africa – FMD PCP

Entebbe, Uganda: 3rd - 5th July 2018

Mokganedi Mokopasetso George Matlho

PROVIDING SUSTAINABLE ANIMAL HEALTH SOLUTIONS

BVI Organization +100 Staff Complement

Mandate of BVI as OIE Reference laboratory for FMD

- Provide timely confirmatory diagnosis of FMD suspects to Directors of Veterinary Services of sub-Saharan Africa
- Conduct research on FMD viruses (aetiology, epidemiology & control) to contribute to global surveillance (FMD Virus Pools)
- Provide FMD diagnostic reagents (e.g. antigens, antisera for ELISA tests) to countries of sub-Saharan Africa
- Provide laboratory technical support relating to the diagnosis of FMD (laboratory bench training)
- Collaborative studies with other Laboratories

FMD DIAGNOSTIC ASSAYS AT BVI

- Virus isolation in lamb kidney primary cell cultures and typing by antigen ELISA and RT-PCR
- Virus Isolation in cell culture and typing by RT-PCR and sequencing
- Virus Genome detection by RT-PCR and sequencing
- Detection of FMD antibodies to NSPs by competition ELISA
- Detection of FMD antibodies to structural proteins by LPBE
- Detection of FMD antibodies to structural proteins by VNT
- Vaccine matching by two dimensional VNT

Distribution of FMD virus isolates by serotype in recent FMD outbreaks in the SADC region, 2014 – 2017

virus serotype	Number of	observatio	Total	RF ¹ in percent (%)	
	2014	2015	2016 – 2017		(70)
Type SAT1	3	1	2	6	25.00
Type SAT2	3	10	2	15	62.50
Type SAT3	0	1	1	2	8.33
Type O	0	0	1	1	4.67
Total observations	6	12	6	24	

			FMD Virus isolation ¹ & characterization		cterization
Submission	Country	Month	Serotype ²	Topotype ³	Pool
1	Zimbabwe	February	SAT2	I	6
2	Zimbabwe	May	SAT2	II	6
3	Botswana	June	SAT1	III	6
4	Mozambique	August	SAT2	1	6
5	Botswana	October	SAT1	III	6
6	Namibia	December	SAT2	III	6

¹In Lamb kidney primary cell culture; ²Typing by antigen ELISA & genome detection & sequencing; ³Genotyping at WRLFMD on sequences submitted by BVI

Table 2: FMD Virus isolation and characterization results for Southern Africa in 2015

Submission	Country	Month	FMD Virus isolation ¹ & characterization		
			Serotype	Topotype	Pool
1	Botswana	March	SAT2	III	6
2	Zambia	April	SAT2	IV	4
3	Namibia	May	SAT2	Ш	6
4	Botswana	June	SAT1	III (WZ)	6
5	Mozambique	June	SAT2	I	6
6	Namibia	June	SAT2	Ш	6
7	Botswana	July	SAT2	Ш	6
8	Botswana	August	SAT2	III	6
9	Zimbabwe	August	SAT2	II	6
10	Namibia	August	SAT1	III (WZ)	6
11	Namibia	August	SAT2	III	6
12	Zambia	October	SAT3	II (WZ)	6

¹In Lamb kidney primary cell culture; ²Typing by antigen ELISA & genome detection & sequencing; ³Genotyping at WRLFMD on sequences submitted by BVI

Table 3: FMD Virus isolation and characterization results on bovine epithelial tissue samples received at OIE-SSARRLFMD, Botswana Vaccine Institute (BVI) from various SADC countries in 2016

Submission	Country	Year	Month	FMD Viru characterization		on¹ &
				Serotype	Topotype	Pool
1	Malawi	2016	February	SAT1	NWZ	6
2	Zimbabwe	2016	August	SAT2	II	6
3	Mauritius	2016	August	0	ME-SA	2

Table 4: FMD Virus isolation and characterization results for Southern Africa 2017

Submission	Country	Month	FMD virus isolation ¹ & characterization		
			Serotype ²	Topotype ³	Pool
1	Zimbabwe	April	SAT2	II.	6
2	Zambia	May	SAT1	I	6
3	Zambia	May	SAT3	II .	6
4	Namibia	August	SAT2	III	6
5	Zimbabwe	September	SAT1	III	6
6	Zimbabwe	September	SAT2	II II	6
7	Namibia	September	SAT2	III	6
8	Botswana	September	SAT2	III	6
9	Mozambique	November	SAT3	I	6

Vaccine Matching

Relationship co-efficients (r-values) also provide an estimate of the likely cross-protection between a Vaccine Strain and a field isolate

Test used = 2dVNT

Interpretation

r-value >0.3

Close relationship between field isolate and vaccine strain

r-value < 0.3

The field strain is significantly different from the vaccine strain

Phylogenetic Analysis

Nucleotide sequencing can provide an indication of how closely related the field isolate is to the vaccine strains.

PHYLOGENETIC ANALYSIS (2015/2016)

ZAMBIA SAT 3 TOPOTYPE II

NAMIBIA SAT 2 TOPOTYPE III

MALAWI SAT 1 (2016) TOPOTYPE I

FMD - FIELD INVESTIGATIONS: UGANDA

- Investigations carried out in 8 districts (Nakasongola, <u>Masindi</u>, <u>Bulisa</u>, Sembabule, Rakai, <u>Isingiro</u>, <u>Kiruhura</u> and Kween).
- Tissues, sera and probing samples collected in 6 of the districts
- The disease was present but at varying stages of progression
- Clinical disease was observed in herds with and without a history of previous vaccination (low coverage in vaccinated areas)
- Of the 21 tissue samples collected, virus isolation was successful in only two samples (Kiruhuru and Masindi)

FMD - FIELD INVESTIGATIONS: UGANDA

Masindi district - Uganda

Serotype O Isolate from Kiruhura district

SAT 2 Isolate from Masindi district

There are no data concerning Uganda, this table shows figures for neighbouring countries

Field strains	% Identity with O Manisa
O SUD 1/05 (Sudan)	83.57
O SUD 2/05 (Sudan)	83.57
O SUD 3/05 (Sudan)	84.04
O KEN 26/05 (Kenya)	85.13
O KEN 27/05 (Kenya)	82.32
O ETH 46/06 (Ethiopia)	85.76
O ETH 48/06 (Ethiopia)	85.76
O COD 3/06 (DRC)	84.19
O COD 6/06 (DRC)	84.04
O COD 90/06 (DRC)	83.88

SAT2 Strains: Identity rate between field strains and vaccine strains (World Reference Laboratory Source)

There are no data concerning Uganda, this table shows figures for neighbouring countries

Field strains	% Identity with SAT2 BVI vaccine strain
SAT2 KEN 32/04	75
SAT2 SUD 1/07	69.91

Congo, Ethiopia, Kenya, Sudan: FMD Field Strains Type O

Diagram shows the different r1 values between field strains and O Manisa BVI vaccine strain

Conclusions

- There has been very low submission rate of samples from eastern (& western) Africa.
- Continuous submission of samples for isolation and characterisation will assist in development of future antigen banks.
- BVI is willing to provide technical support in the investigation, collection and shipment of samples.
- Regional reference laboratories should continue to be integrated into the regional PCP roadmaps in order to provide technical support where needed.
- AU-IBAR to invite OIE regional reference laboratories to preparatory meetings prior to the OIE general session

THANK YOU FOR YOUR ATTENTION

