

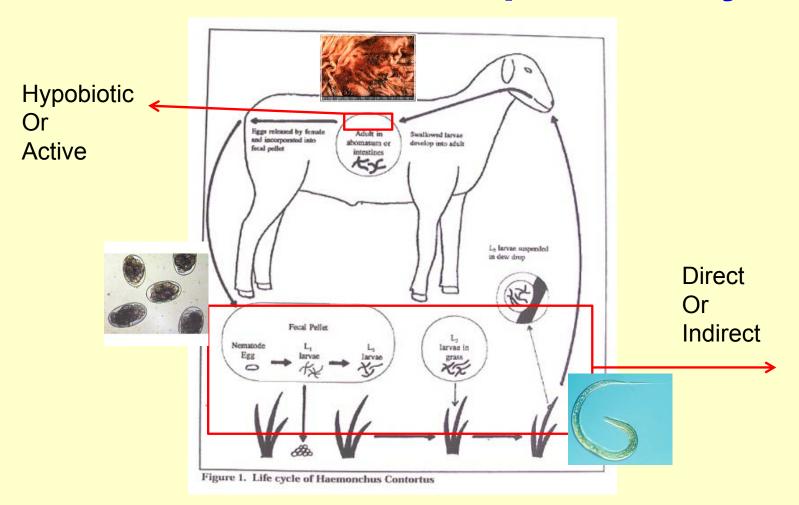
Anthelmintic Resistance

Dr. Rami M. Mukbel DVM, PhD

Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan.

"Anthelmintic resistance:

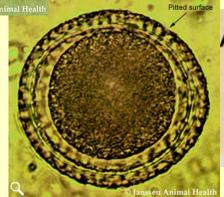
Heritable genetic change in a population of worms that enables some individual worms to survive drug treatments that are generally effective against the same species and stage of infection at the same dose rate."


Kaplan

<90% worm egg reduction following use of a specific dewormer = resistance

Parasites have complex life cycle

Parasites have different egg shapes, size and diagnostic tech.





Major Anthelmintic Families

- Group 1: Benzimadazoles (BZ)
 - fenbendazole, oxfendazole and albendazole attack parasite's metabolic system through binding beta-tubulin & inhibit microtubules
- Group 2: Imidazoles (levamisole, LEV) and hydropyrimidines (pyrantel/morantel)
 - selective nematode nicotinic agonists selectively cause contraction of nematode muscle
- Group 3: Endectocides, macrocyclic lactones
 ivermectin, doramectin, eprinomectin
 attack parasite's nervous system, cause nematode
 paralysis and immobilization

Resistance Mechanisms

Target changes molecularly

Metabolism

Access

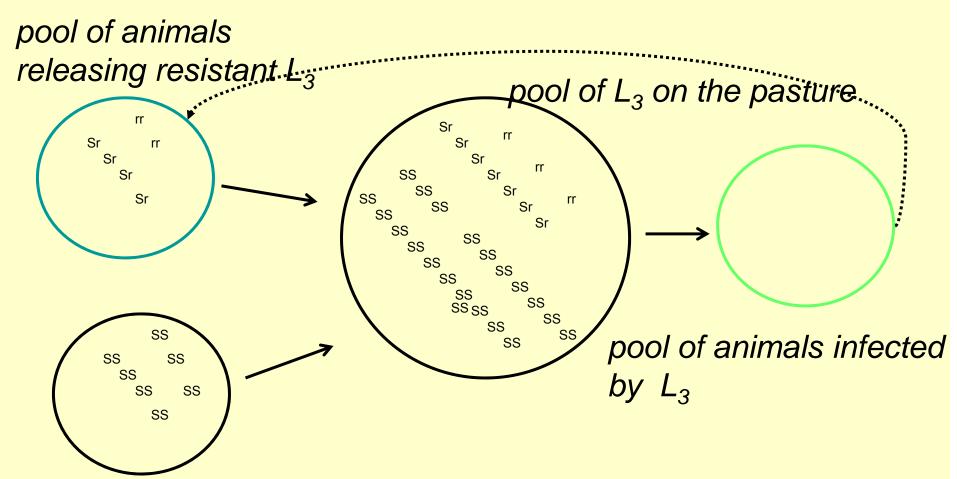
Amplification of genes

Mechanism of resistance

Anthelmintic family	Mechanism of resistance
Benzimidazoles	β-tubulin isotype 1 mutations: F200Y, F167Y
	β-tubulin isotype 2 mutations: F200Y, F167Y, deletion. Altered metabolism and/or uptake.
Avermectins & milbemycins	Mutations in GluCl and/or GABA-R genes
	Overexpression of P-glycoproteins
Levamisole	Changes in nicotinic acetylcholine receptors

☐ Three phases of accumulation of resistance:

- Establishment
- Development
- Emergence


13 treatments: 1/1,000,000; 1/500,000; 1/250,000; 1/125,000; 1/62,500; 1/31,250; 1/16,000; 1/8,000; 1/4,000; 1/2,000; 1/1,000; 1/500; 1/250; 1/125.

6 more treatments to reach complete treatment failure (1/125; 1/62; 1/31, 1/15; 1/8; 1/4, 1/2).

Kinetics of spread of resistance

pool of animals releasing sensitive L₃

Factors affecting selection pressure

Parasite genetics

- Recessive or dominant genes
- Number of genes fewer faster
- Genetic diversity of parasites
- Fitness of resistant parasites

Parasite Biology

- Generation time Haemonchus
- Direct life cycles
- Movement of hosts
- REFUGIA

Identification of Anthelmintic Resistance

1. Fecal Egg Count Reduction Tests (FECR)

Advantage:

- -Easy to preform with training
 - Good for services studies
 - Can be done on the farm level.

- Disadvantage: Dose not Always reflect the actual parasitic load an animal
 - with 100 EPG can harbor up to 100,000 luminal worms
 - Can not be used for all parasitic infection
 - Samples preservation issues.
- 2. Egg Hatch Assays
- 3. Larval Development Tests -
- 4. Adult Development Tests -.
- 5. DNA Probes

The extent of the problem

Small ruminants (sheep, goats)

Haemonchus contortus, Trichostrongylus spp. and Ostertagia, Nematodirus

Cattle relatively few studies

Cooperia spp., Ostertagia, Oesophagostomum spp.

Horses

Cyathostomins and *Parascaris equorum* to a lesser extent: *Oxuris equi* and Habronema/Draschia

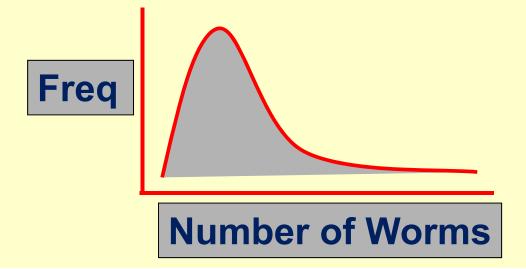
Countries with highest record of Resistance

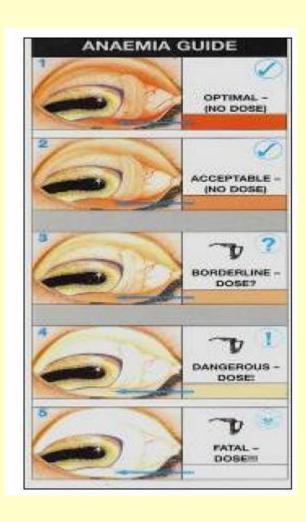
- United State
- Africa: South Africa, Kenya, Other ???
- Australia and New Zealand
- Brazil
- Europe lesser extent
- Asia
- Middle East ??? Turkey

Managing selection pressure

- Rate of appearance of resistance varies between anthelmintics
- Slow release anthelmintic worse
- Avoid under-dosing: dose per weight, goat/sheep dose, proper delivery
- Maintain refugia: maintaining population of susceptible parasites in the environment
- Planned treatments reduce survival of resistant l₃
- Combinations of anthelmintics or complementary methods

How to deal with anthelmintic resistance


- No reversion
- Pasture management to reduce treatments
- Vaccines?
- Reduce practices that increase emergence and spread.
- New Compounds from drug companies--now some found to be resistant.


Selective Treatment

- Parasites are not equally distributed in groups of animals
 - ~20 % of animals harbor most of the worms
 responsible for most of egg output

Mänagement in endemic areas. FAMACHA

- Management in endemic areas
 - Sustainability, treat pathogenic species when clinically required.

How to deal with anthelminic resistance

Combinations

Combining anthelmintic with different mode of action might delay resistance

- Quarantine:
- -New animals
- -Animals harboring resistant parasites

Non-chemical methods

- Protein and energy supplements
- Alternate grazing
- Rotation of pastures in hot areas allowing L3 to die
- Removal of feces horses
- Host selection –sheep and cattle may be resistant
- Nematophagous fungi

The Australian Model for Over coming Resistance in Small Ruminant

- Using effective anthelmintics
- -- New drug monepantel
- ---Combination anthelmintic derquantel + abamectin
- Combination chemotherapy
- Diagnosis

Rapid and accurate diagnosis..... PCR for resistance gene

• **Refugia...**mix animals of different age, treat only infected with high parasitic load

Recommendation

- Surveillance studies to determine the extent of AnR
- Capacity Building for lab worker for better diagnosis and resistance measurement.
- Selection for resistant animal breeds.
- Education program for farmer and veterinarian for dealing with parasitic resistance issue
- Building a health program in each area based on data obtained specifically for that area including anthelmintic resistance information.
- Establishing reference laboratory for parasite ID and detection of anthelmintic resistance

Acknowledgment

