

Importance of antiparasitic drugs in animal health and production

Dr. Chandra Bhushan

Global Veterinary Services, Global Marketing Food Animal Products Bayer Animal Health GmbH, Germany

Importance of livestock for Rural communities

- Livestock is a critically important asset in rural communities across Africa
- The well being and health of livestock is important for the communities
- Parasitic diseases rank amongst top diseases which impact the productivity of livestock adversely

Why should we control parasites / parasitic diseases?

- To reduce/ minimize economic losses
- To safeguard animal health
- To maintain animal welfare
- To reduce / minimize risk of parasitic zoonoses

Need for use of antiparasitics to reduce/ minimize economic losses

Tick species	Live-weight-gain loss (g)	Milk loss (g)
Amblyomma hebraeum (Norval et al., 1989)	10	7
Amblyomma variegatum (Pegram & Oosterwijk, 1990)	45-60*	-
Amblyomma americanum (Barnard, 1985)	16-29	-
Amblyomma maculatum (Williams, Hair & McNew, 1978)	33	-
Boophilus microplus (Sutherst et al., 1988)	0.6-1.5	-
Rhipicephalus appendiculatus (Norval et al., 1988)	4	7
Rhipicephalus appendiculatus (de Castro et al., 1985b)	NSD	-

*Excluding compensatory live-weight gain

NSD Non sufficient data

.

Need for use of antiparasitics to maintain animal welfare

Need for use of antiparasitics to reduce/ minimize risk of zoonotic diseases

A 16-yr old Kazak girl suffering from severe secondary hydatidosis - following an unsuccessful surgical operation (Xinjiang, PRC, 1989).

Need for use of antiparasitics to safeguard animal health

Boophilus microlus engorged female

Babesia bigemina

Anaplasma marginale

Need for use of antiparasitics to safeguard animal health

Rhipicephalus appendiculaus

Theileria infection

Need for use of antiparasitics to safeguard animal health

Antiparasitic drugs

- Ectoparasiticides
- Endoparasiticides
- Endectocides

- Effectively kills/removes adult and immature parasite
- Safe
- Easy to administer
- Economic for producer
- With holding period

Control of Ectoparasites : Ectoparasiticides

Chemical control of Ectoparasites (Chemical groups available)

- Organochlorines
- Organophosphates (e.g. Coumaphos, Trichlorfon)
- Carbamates (e.g. Propoxur)
- Synthetic pyrethroids (e.g. Flumethrin, Cypermethrin, Deltamethrin)
- Amidines (e.g. Amitraz, Cymiazole)
- Macrocyclic lactones (e.g. Ivermectin, Doramectin, Moxidectin)
- IGR (e.g. Fluazuron)
- Pyrazole group (e.g. Fipronil)
- Spinosad

Formulations available to apply Ectoparasiticides

- Dips (herds)
- Spray (hand sprayer fewer animals, spray races)
- Dust (few animals)
- Pour on (herds)
- Injectables (herds)
- Ear Tags (herds)
- Pheromone/ acaricide impregnated devices (tail band): few animals

Healthier World

Plunge dips:

Formulation used is EC, several thousands of litre of chemicals needed, chemical disposal is difficult, stress to animals, stripping, checking chemical quality from time to time

Hand spray : Formulation used are EC, WP, SC

Tedious, time consuming

Spray races: Formulation used are EC,

Time consuming, difficult to reach underbelly

Healthy Animals Healthier World

Pour On :

Less stresss to animal, No requirement for disposal, No water requirement for solution, no pumps etc. Easy to apply.

Injectable:

ML are used as injectable To control endo and ectoparasites

Disease transmission from one animal to other and lesions at injection sites

- Eartags:
- Effective way of controlling
- Flies, efficacy for 4-5 months

- Chemical control of Endoparasites (chemical groups available : anti nematodes)
- Benzimidazoles and Probenzimidazoles (e.g. fenbendazole, albendazole, oxibendazole, febantel)
- Imidazothiazoles (e.g. levamisole)
- Tetrahydropyrimidine (e.g. Pyrantel)
- Piperazines
- Organophosphates (e.g. trichlorphon)
- Octadepsipeptides (e.g. emodepside)
- Amino acetonitrile derivatives (Monepantel)

- Chemical control of Endoparasites (chemical groups available : anti cestodes)
- Praziquantel
- Epsiprantel
- Benzimidazoles
- Chemical control of Endoparasites (chemical groups available : anti trematodes)
- Clorsulon
- Salicylanilides (e.g. closantel, rafoxanide)
- Triclabendazole

- Chemical control of Endoparasites

 (chemical groups available : anti
 protozoal : anticoccidials)
- Ionophores (e.g. monensin, lasalocid)
- Amprolium
- Diclazuril
- Toltrazuril
- Quinolones (e.g. decoquinate)

- Chemical control of Endoparasites (chemical groups available : anti protozoal)
- Imidocarb dipropinate
- Diminazene acetuarate
- Pantamidines
- Buparvaquones
- Quinapyramine
- Isometamidium

Formulations available to apply Endoparasiticides

Oral suspensions

Injections

In feed

Control of endo and ectoparasites : endectocides

Chemical control of endo and ecto parasites (chemical groups available : Macrocyclic lactones

- Ivermectin
- Doramectin
- Eprinomectin
- Moxidectin
- Abamectin
- Selamectin
- Milbemycin oxime
- ⇒ Large spectrum: intestinal worms, lung worms, ectoparasites: mange, lice, oestus ovis, parafilaria, Thelazia, Horn flies (Cochliomiya),Hypoderma bovis, Ticks (Boophilus spp)

Formulations available to apply Endoparasiticides

- Injectable: Cattle, Swine- broad spectrum
- Oral drench / in feed : Sheep, Swine,Goat mainly endoparasites + Itch mite (Psorergates ovis) + oestrus ovis
- Pour on: Cattle mainly endoparasites, Hypoderma bovis, Lice, Mange (Sarcoptes and Chorioptes), Horn flies (Haematobia irritans)

What you need to know about antiparasitic drugs before use

- Dosage
- · Formulations and route of administration
- Any special concerns ?
- Is it toxic to host?
- Mechanism of action
- Teratogenicity
- Resistance
- Withdrawal time