RISK FACTORS AFFECTING CLINICAL DISEASE

Larry Hammell

Professor, Dept of Health Management Director, AVC Centre for Aquatic Health Sciences Innovation PEI Research Chair (Aquatic Epidemiology)

Atlantic Veterinary College University of Prince Edward Island

and

Co-Director, OIE CC ERAAAD (www.eraaad.org)

Quantifying probabilities

• Predicting probabilities for disease occurrence

Risk Factor Studies

- Risk factor studies are observational studies
- · Significant risk factors
 - Are associated with an increase chance of fish having the disease
 - Can be used to recommend disease control protocols
 - May be used to form hypotheses for future research

Quantifying probabilities

- Straightforward in cross-sectional studies which take a snapshot of entire area / industry / or segment of industry
 - Important to avoid bias inclusion of factors or cases
- Quantify number of cases occurring when factor is <u>present</u> compared to when factor is absent

Case study – Infectious Salmon Anemia

- Information collected from
 - 83 of the 85 qualifying farms (97.6% participation)
 - 267 cages
- Information analyzed in groups
 - Site factors (74 different factors)
 - Cage factors (37)
 - Hatchery factors (14)

Cage risk factor data Results from 250 cages

Factor	level	Odds ratio
Number of lice treatments with SLICE™	>2 times	1
	≤2 times	2.67
Depth of cage	>9 m	1
	≤9 m	2.96
Meters underneath net at low tide	≤3 m	1
	>3 m	2.26

Cage risk factor data

Results from 206 cages

Factor	level	Odds ratio
Number of pollock farmer perceived to be in the cage	<1000	1
	≥1000	4.40
Depth of cage	>9 m	1
	≤9 m	3.51
Meters underneath net at low tide	≤3 m	1
	>3 m	3.34

Hatchery risk factor data

Results from 233 cages

Factor	Level	Odds ratio	
i actor	Level		
Juvenile weight	<99 g	1	
	≥99 g	2.40	

Combined risk factor data

Results from 260 cages

Factor	level	Odds ratio
Distance to processing	>1 km	1
boats traveling past site	≤1 km	9.43
Dry feed is delivered by feed	no	1
company	yes	4.03
Donth of come	>9 m	1
Depth of cage	≤9 m	3.34
Number of lice treatments	>2 times	1
with any product	≤2 times	3.31
Oleanat mainth an with 10 A	>0.5 km	1
Closest neighbor with ISA	≤0.5 km	2.41

Combined risk factor data

Results from 199 cages

Factor	level	Odds ratio
Number of cages with post	no cages	1
transfer mortalities greater than 5%	≥1 cage	4.52
Depth of cage	>9 m	1
	≤9 m	3.28
Smolt weight	<99 g	1
	≥99 g	2.95
Dry feed is delivered by feed company	no	1
	yes	2.68
•		

Survival analysis data Results from 83 sites

Factor	level	Odds ratio
Nearest neighbor with ISA categorized	≥5 km	1
	≥2 km but <5 km	1.17
	≥0.5 km but <2km	2.01
	<0.5 km	5.50
Distance to processing	>1 km	1
boats traveling past site	≤1 km	7.47
Dry feed is delivered by feed company	no	1
	yes	2.66

Objectives of Infectious Pathogen control practices

- 1. reduce new cases / new transmissions
- 2. Reduce infections becoming mortality cases

Exposure to live or dead infected fish

- Younger fish exposed to older fish
 - Year class separation for sites
 - Eliminated multiple YC sites
 - YC overlap problem for several years
 - Year class separation for areas
 - Area (or Bay) management areas

		Hazard		
Variable	Level	Ratio	Con	f. Int.
Propn. cages	<0.9			
96 year class	> 0.9	0.38	0.22	0.67
			Hammell & Dohoo, JFD, 2005	

Year class separation

- Reduce exposure to potentially infected (older) fish
 - Started in 1997 with most sites have 2-3 year classes
 - Now essentially 100% of sites are single YC
- Most BMAs are single YC

Practices to reduce potential for pathogen spread

- · Mortality collection
 - Frequent mortality collection through airlift system or frequent diving
 - Diving different bag (disinfected) for every cage
 - Divers inspect high mortality cages last
 - Disinfect between cages, at least between groups of cages
 - Separate dive suits for each site
 - Better than disinfect between sites

Sites at which divers worked at multiple sites were more likely to become problem sites (RR = 3.3) Hammell, DobooJFD 2005

- Transmission of virus by diver likely occurring
- (Could not examine difference between divers who disinfect and divers who do not)

Mortality disposal

- "certify" mort collection practices/companies
- Restrict use of morts
- Restricted handling practices (bagging, transport, etc)
 - Covered on site
 - Taken to shore on regular basis
 - Neutralized (e.g. acidification)

Harvest practices

- Containment of all blood materials
 - Regular audits of harvest vessels
- Separate vessels for ISA positive sites / BMA
- Altered boat traffic to processing plant
- Processing plants
 - ISA biocontainment (acidification, heat, other)
 - Decontamination audited (testing effluent included)

Early depopulation of positive fish

- Frequency (depends on zone: suspect vs free)
- Testing of all suitable mortalities (to a limit)
- Early detection and then rapid depopulation
 - False positives contribute to success of depopulations ... but they are costly!
 - False negatives contribute to transmission (within and between sites)

Summary

- Reduce Introductions
 - Exposure to live or dead infected fish
 - Exposure to virus contaminated water
 - Exposure to contaminated equipment
 - Exposure to contaminated people
- Reduce infections becoming clinical cases