New Avenues for Vaccine Development

David Wallace

ARC-Onderstepoort Veterinary Institute, South Africa

Onderstepoort Veterinary Institute

Virus structure and genomic layout

(Van Regenmortel et al., 2000)

Experimental vaccines:

(Clone 13) NSs-defective clone (IFN antagonist)

MV P12 (ZH548) – mutagen-induced changes (segments M & L)

R566 (Clone 13 + MV P12 – reassortment) S segment Clone 13 and L & M of MV P12

 Safer, much less chance for reversion via reassortment with virulent strains in the field

Experimental vaccines - alternatives :

- Subunit
- DNA
- **Reverse Genetics**
- Virus-vectored

Experimental vaccines (continued) :

Subunit (Schmaljohn et al., 1989, Wallace et al., 2006)

- baculovirus : Gn & Gc good protection in mice
- *E. coli*: tGn good protection in mice NC - partial protection in mice

NC

DNA (Spik et al., 2006; Wallace et al., 2006; Lorenzo et al., 2008**)**

- GPs +NSm poor antibody response & protection
- GPs -NSm good antibody responses & protection
 - good and long-lasting antibodies (but, low neutralising)

Experimental vaccines (continued) :

Reverse genetics

(Gerrard et al., 2007; Bird et al., 2007; Won et al., 2007; Bird et al., 2008)

RVFV genome

RVFV genomes amplified and sequenced using Roche' GS technology (ARC-OVI)

(Dr Christiaan Potgieter)

The Terry Dermody reverse genetics strategy for reovirus

The Terry Dermody reverse genetics strategy for reovirus (continued)

Recovery of Viable Reovirus following Plasmid Transfection

Experimental vaccines (continued) :

Reverse genetics (Bird et al., 2008)

Deleted NSs gene alone or with NSm (EGFP-tagged)

- fully protected rats
- good DIVA properties (lack of NSm antibodies)

Experimental vaccines (continued) :

Virus-vectored:

Sindbis-replicon vectored (Heise et al., 2009)

(Express GP genes : 100% protection in mice, good Nab levels in sheep)

Pox-vectored: VV (Collett et al., 1987) &

LSDV (Wallace & Viljoen, 2005; Wallace et al., 2006) **Advantages of LSDV-vectored vaccines :**

Vector: live, attenuated, stable, immunity

Dual potential: LSDV, SPV, GPV

Marker vaccine - DIVA

Potential human vaccine? (e.g. rLSDV-RVFV)

X 40

RVFV IgG ELISA and mouse challenge studies

rLSDV-RVFV challenge trial in sheep – Temperature reactions

 ← #760 (rLSDV - 7 log)	-■- #680 (rLSDV - 7log)	→ #841 (rLSDV - 7log)
★ #662 (PBS)	-■- #959 (OBP RVFV vac)	→ #957 (OBP RVFV vac
+ #674 (PBS)	#677 (rLSDV - 6log)	→ #667 (rLSDV - 6log)

rLSDV-RVFV challenge trial in sheep – RVFV-specific antibodies

TIME (days post-vaccination)

Current work :

- Removal of selection marker genes (GALVmed funded)
- Removal of putative immunomodulatory genes (ourselves and CIRAD)
 - Planning combined animal trials

Conclusion :

- Many different types of new "vaccines" and delivery systems (e.g. plants, VEE, canarypox)

- New technologies (e.g. nanoparticles)

- New generation adjuvants
- Likely that more than one will require full development due to differing needs (e.g. governmental policies etc.)

FIN!

Acknowledgements:

Dr Bjorn Reininghaus – for photo in opening slide

Dr Christiaan Potgieter – slides and helpful discussions

ARC-OVI Directorate – funding for attendance at this meeting

POX-VECTORED VACCINES?

Use of a poxvirus (e.g. LSDV) as a vehicle for the expression of immunogenic proteins of a pathogen in specific target animals to confer protection against the pathogen.

LSDV expressing the F and HA genes of RPV – dual protection

(Romero et al., 2003)

Important considerations :

- Efficacy (saftey in animals/humans, recombinantion/revertence)
- Type and duration of immunity
- DIVA (marker vaccine)
- Geographical region (indigenous vs exotic)

3.2 million cattle with LSD in Egypt in 2006.400 000 deaths.

A solution:

LSDV – developed as vaccine vector

• SA OBP vaccine strain proven track-record.

 Good results in animal trials (e.g. rLSDV-RVFV)

Construct description:

LSDV SA OBP vaccine

- Vaccinia virus p7.5K promoter
- Positive selectable marker gene: gpt
- Visual marker gene: EGFP

Next stage:

 \bullet

Remove of putative immunomodulatory genes (for improving immune responses – antibody levels, duration etc.)

GENERATION OF LSDV RECOMBINANTS

RVFV genomic layout

