RE-EMERGENCE OF RIFT VALLEY FEVER IN SOUTHERN AND EASTERN AFRICA: HOW CAN WE BETTER PREDICT AND RESPOND?

R SWANEPOEL SPECIAL PATHOGENS UNIT NATIONAL INSTITUTE FOR COMMUNICABLE DISEASES SOUTH AFRICA

RIFT VALLEY FEVER: HISTORY/1

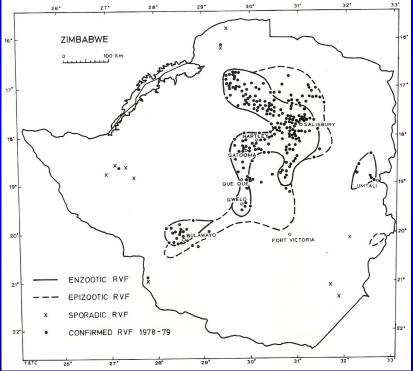
- 1910-12: DISEASE COMPATIBLE WITH RVF DESCRIBED IN LAMBS (EUROPEAN BREED) IN RIFT VALLEY, KENYA
- 1930: VIRUS FIRST ISOLATED IN OUTBREAK OF SHEEP DISEASE IN RIFT VALLEY, KENYA

- MOSQUITO TRANSMISSION DEMONSTRATED
- BENIGN HUMAN DISEASE WITH TRANSIENT LOSS OF VISUAL ACUITY NOTED
- SUBSEQUENT RECOGNITION OF PRESENCE OF VIRUS IN MANY SUB-SAHARAN COUNTRIES - (NB NOT CONFINED TO RIFT VALLEY)
- 1944: ISOLATION OF RVF VIRUS IN SEMLIKI FOREST UGANDA (NO LIVESTOCK OR HUMANS IN VICINITY) - HENCE RVF ASSUMED TO BE ENDEMIC IN FORESTS WITH SPREAD TO GRASSLANDS AFTER HEAVY RAINS
- 1950-1: LARGE OUTBREAK IN SOUTH AFRICA ASSOCIATED WITH PANS & VLEIS (DAMBOS) - OCULAR LESIONS RECOGNIZED
- 197-6: LARGE OUTBREAK IN SOUTH AFRICA FATAL HUMAN DISEASE RECOGNIZED FOR FIRST TIME

RIFT VALLEY FEVER: HISTORY/2

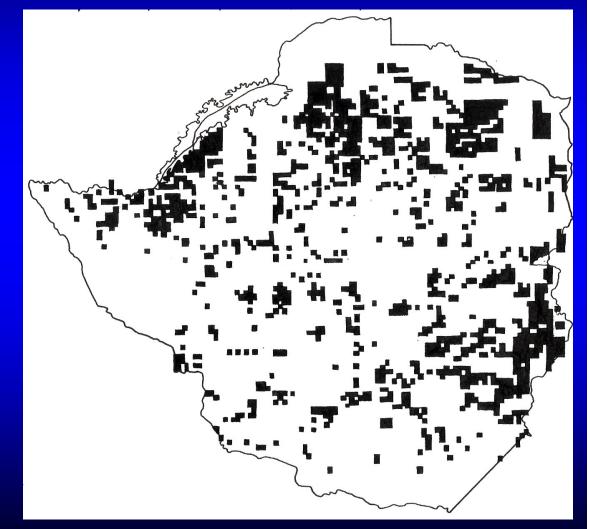
- 1977-8: APPEARANCE OF RVF BEYOND SUB-SAHARAN AFRICA IN
 EGYPT >200,000 HUMAN INFECTIONS 598 DEATHS
- 1979: RECOGNITION OF RVF IN MADAGASCAR
- 1987: LARGE OUTBREAKS IN MAURITANIA/SENEGAL MANY HUMAN DEATHS
- 1997-8: LARGE OUTBREAK N-E KENYA/SOMALIA/TANZANIA >300 HUMAN DEATHS
- 2000-1: APPEARANCE OF RVF BEYOND AFRICAN REGION IN SAUDI ARABIA & YEMEN - >200 DEATHS
- · 2006-7: LARGE OUTBREAK N-E KENYA/SOMALIA/TANZANIA
- · 2007: OUTBREAK IN SUDAN

RVF OBSERVATIONS IN ZIMBABWE 1955-1979


16,892 SERA, 4,002 VIROLOGICAL SPECIMENS FROM 2,354 LOCATIONS TESTED:

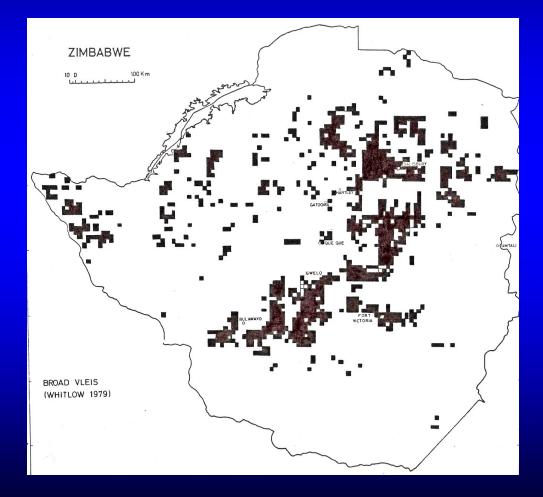
•RVF ENDEMIC IN SAVANAH/GRASSLANDS MAINLY ON CENTRAL WATERSHED PLATEAU

·LOW LEVEL OF VIRUS ACTIVITY TRIGGERED BY RAINS EVERY YEAR - ONLY DETECTED BY INTENSIVE MONITORING


•EPIDEMICS OCCUR IN SAME AREAS AS ENDEMIC VIRUS ACTIVITY - TRIGGERED BY EXCEPTIONAL RAINS

•ENDEMICITY PROBABLY ASSOCIATED WITH TRANSOVARIAL TRANSMISSION OF VIRUS IN FLOODWATER-BREEDING AEDES MOSQUITOES AS EARLIER DEMONSTRATED IN SOUTH AFRICA (1959) AND LATER IN KENYA (1985)

ZIMBABWE - CLOSED (CANOPY) FOREST - FROM AERIAL PHOTOGRAPHS

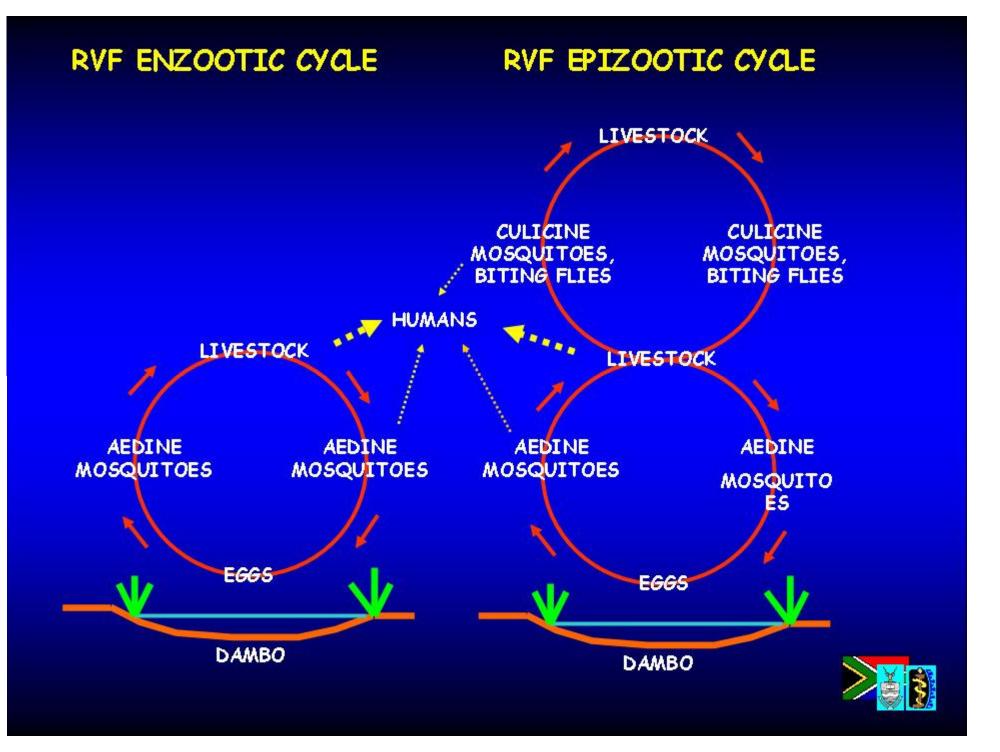


DISTRIBUTION OF FOREST DOES NOT CORRESPOND WITH RVF ENDEMICITY = MIRROR IMAGE

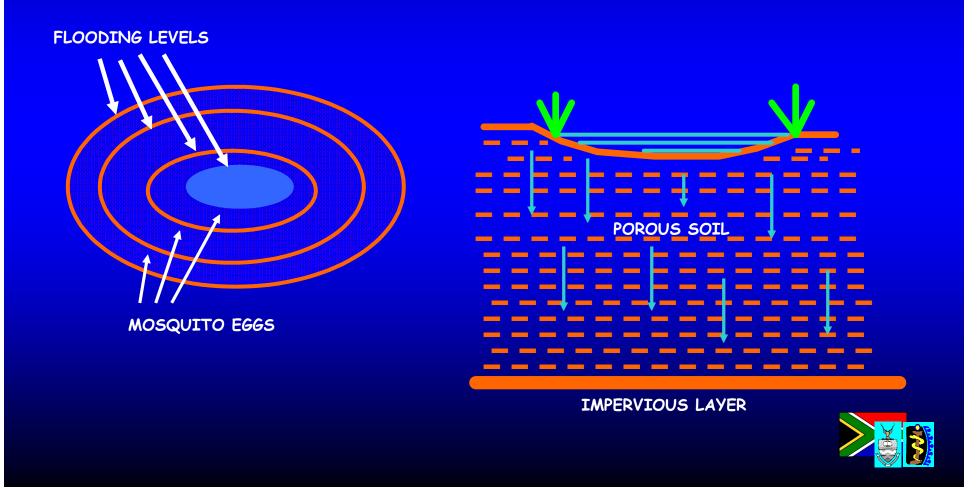
ZIMBABWE - DISTRIBUTION OF BROAD VLEIS (DAMBOS)

DISTRIBUTION OF BROAD VLEIS (DAMBOS) CORRESPONDS WITH AREAS OF RVF ENDEMICITY

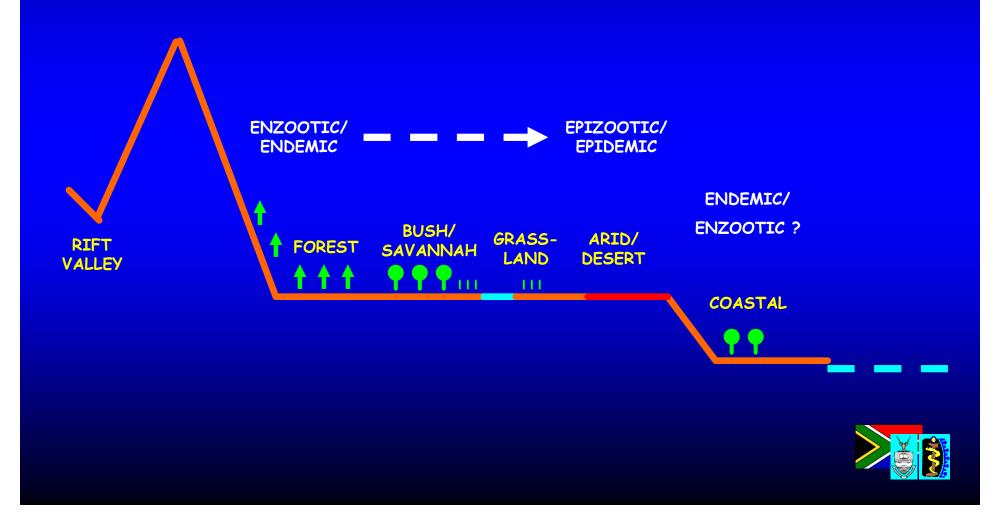
VECTORS OF RVF


ENZOOTIC (ENDEMIC) VECTORS = FLOODWATER-BREEDING AEDES MOSQUITOES (I.E. ONLY CERTAIN SPECIES OF AEDES)

- EGGS LAID IN MUD AT THE EDGE OF WATER IN FLOODED DAMBOS
- NB EGGS REQUIRE DRYING BEFORE THEY WILL HATCH WHEN THE DAMBOS BECOME FLOODED AGAIN
- EGGS CAN SURVIVE FOR YEARS IN DRY MUD
- TRANSOVARIAL TRANSMISSION OF VIRUS OCCURS IN A LOW PROPORTION OF INFECTED AEDES MOSQUITOES
- INFECTED EGGS = MECHANISM FOR PERPETUATION OF VIRUS
- INFECTED EGGS HATCH AND ADULT AEDES EMERGE AFTER FLOODING TO TRANSMIT INFECTION TO LIVESTOCK
- LIFE CYCLE RAPIDLY COMPLETED 10-20 DAYS


EPIZOOTIC (EPIDEMIC) VECTORS = CULICINE MOSQUITOES, BITING FLIES

ACQUIRE VIRUS BY TAKING BLOODMEALS FROM INFECTED (VIRAEMIC) LIVESTOCK AND SUSTAIN THE OUTBREAK BY TRANSMITTING INFECTION



DRAINAGE/DRYING OR FLOODING OF DAMBOS: EFFECTS ON FLOODWATER-BREEDING AEDES MOSQUITOES

EFFECTS OF TOPOGRAPHY/ECOZONES ON RVF EPIDEMIOLOGY

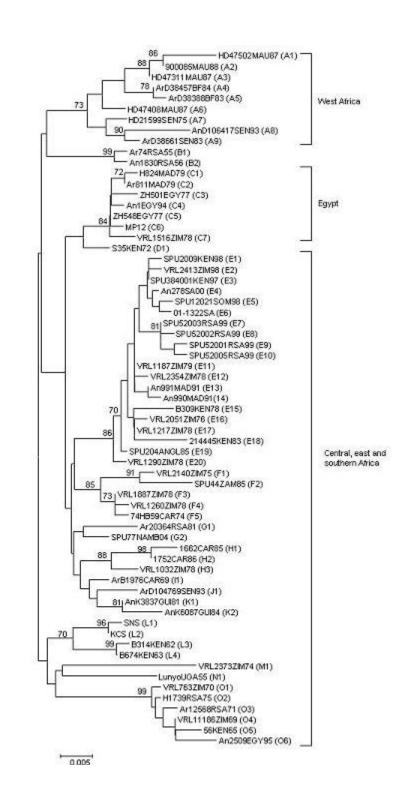
RVF VIRUS ISOLATIONS RECORDED IN KENYA 1961-98 ACCORDING TO ECOZONE (as summarised by Davies 1998)

YEAR	ECOZONE						
	II	III	IV	V	VI		
1961	RVF	RVF	RVF	RVF	RVF		
1962	RVF	RVF	RVF	RVF			
1963	RVF	RVF					
1967	RVF	RVF	RVF				
1968	RVF	RVF	RVF				
1971	RVF						
1977	RVF	RVF	RVF	RVF			
1978	RVF	RVF					
1981	RVF						
1983	RVF	RVF					
1989	RVF	RVF	RVF				
1990	RVF	RVF	RVF				
1993	RVF	RVF	RVF				
1994	RVF	RVF					
1997	RVF	RVF	RVF	RVF	RVF		
1998	RVF	RVF	RVF	RVF	RVF		

CONCLUSION: RVF IS ENDEMIC IN KENYA - ALSO TANZANIA AND MANY OTHER COUNTRIES IN AFRICA

1997-98 RVF OUTBREAK NE KENYA & SOMALIA

RVF VIRUS PHYLOGENY


•VIRUS REMARKABLY STABLE GENETICALLY AND ANTIGENICALLY

•FOLLOWING HEAVY RAINS OUTBREAKS ASSOCIATED EITHER WITH A SINGLE GENETIC VARIANT OF VIRUS (= EPIDEMIC SPREAD) OR

WITH SIMULTANEOUS EMERGENCE OF MULTIPLE VARIANTS FROM ENDEMIC FOCI

(unpublished information NICD)

PHASES OF RVF DETECTION:

PREDICTION REMOTE SENSING - RAINFALL ESTIMATES - NDVI - ENSO PHENOMENA SURVEILLANCE

VETERINARY & MEDICAL ALERTNESS SENTINEL HERDS/FLOCKS VECTOR SURVEILLANCE

RECOGNITION VETERINARY DISEASE HUMAN DISEASE VECTORS

CONFIRMATION LABORATORY TESTS

RECOGNITION OF RVF OUTBREAKS

- SUDDEN OUTBREAK OF DISEASE INVOLVING DEATHS OF YOUNG RUMINANTS (ESPECIALLY LAMBS & CALVES) AND ABORTION IN PREGNANT ADULTS FOLLOWING THE OCCURRENCE OF HEAVY RAINS
- ACCOMPANIED BY REPORTS OF FEBRILE DISEASE IN HUMANS -OFTEN WITH SOME DEATHS
- OUTBREAKS OFTEN OCCUR IN AREAS WITH POOR ROADS AND SERVICES - ABORTIONS IN LIVESTOCK AT 5-15% LEVEL NOT REPORTED
- IN CONTRAST THE OCCURRENCE OF HUMAN DISEASE WITH FATALITIES IS USUALLY REPORTED BY MEDICAL SERVICES/NGO's

CLINICAL SIGNS IN LIVESTOCK

- YOUNG ANIMALS:
- SUDDEN ONSET OF HIGH FEVER
- ACUTE PROSTRATION, COLLAPSE & DEATH
- ADULTS:
- · ABORTIONS THE MOST IMPORTANT SIGN
- DYSTOCIA, SOME TERATOLOGY, HYDROPS AMNII
- ANOREXIA, DYSGALACTIA, NASAL AND LACHRYMAL DISCHARGES
- · SALIVATION, 'VOMITING', LYMPHADENITIS
- COLIC, JAUNDICE, HAEMORRHAGIC ENTERITIS

MORBIDITY/MORTALITY IN LIVESTOCK

- SHEEP MOST SUSCEPTIBLE → CATTLE → GOATS→ CAMELS LEAST SUSCEPTIBLE (ABORTION ONLY)
- CLINICAL DISEASE ESPECIALLY IN EXOTIC BREEDS
- INDIGENOUS ANIMALS GENERALLY LESS SUSCEPTIBLE - EXCEPT IN ARID ZONES
- · 20-90% MORBIDITY
- 40-60% MORTALITY IN YOUNG, 2-5% IN ADULTS
- · PREGNANT ANIMALS ABORT

RVF HUMAN DISEASE

INFECTED BY CONTACT WITH DISEASED ANIMAL TISSUES OR MOSQUITO BITE - LESS COMMON IN SUB-SHAHARAN AFRICA WHERE VECTORS ARE SYLVATIC (DO NOT ENTER DWELLINGS)

INCUBATION PERIOD <1 WEEK

=80% INFECTIONS SUBCLINICAL OR MILD

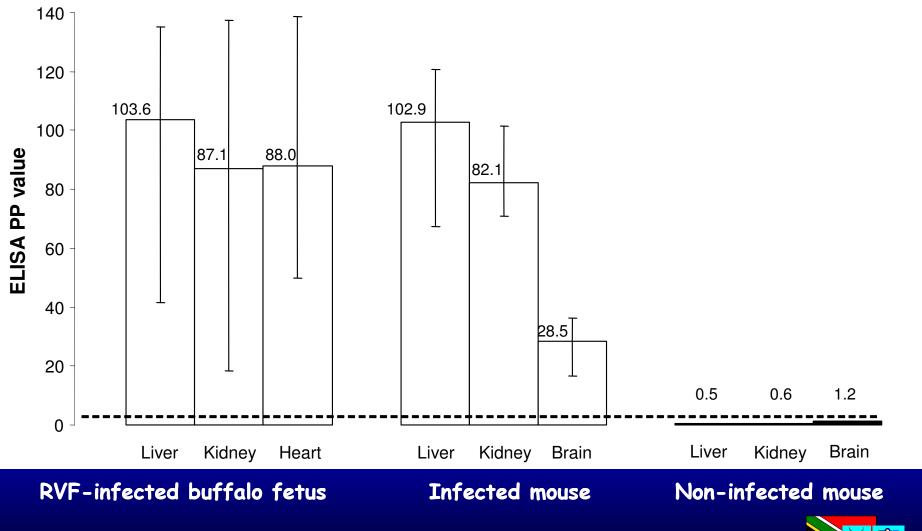
<0.5% FATAL HEMORRHAGIC FEVER/ENCEPHALITIS

APPROXIMATELY 5% OCULAR SEQUELAE

LABORATORY CONFIRMATION OF CURRENT RVF INFECTION

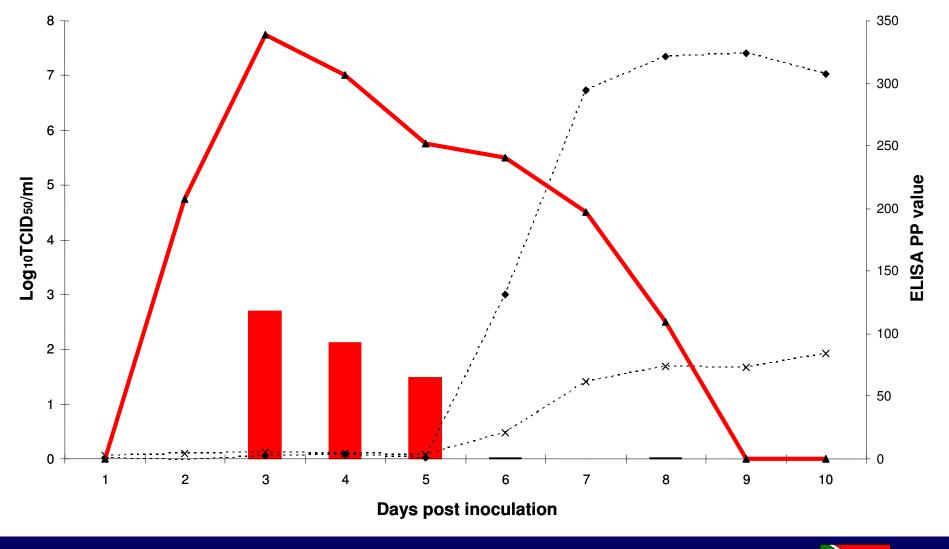
- ANATOMICAL PATHOLOGY
- ANTIGEN DETECTION (AGID, ELISA, IF)
- RT-PCR DETECTION OF VIRAL RNA
- VIRUS ISOLATION (MOUSE INOCULATION, TC)
- ANTIBODY TESTS (HAI, NEUT, ELISA IgM, IgG)
- HISTOPATHOLOGY, IMMUNOHISTOCHÉMISTRY

VIROLOGICAL DIAGNOSIS OF RVF


ANTIGEN DETECTION Recombinant NP sandwich ELISA

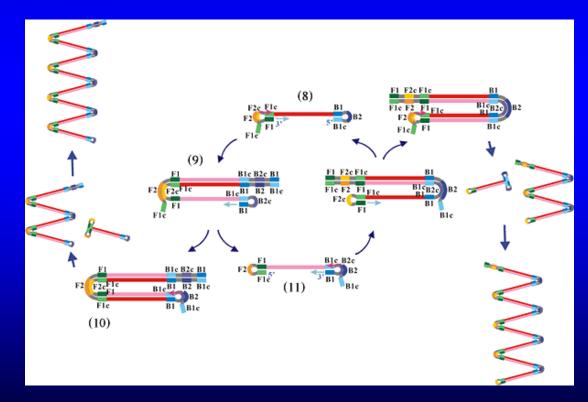
NUCLEIC ACID DETECTION RT-PCR Taqman Real-Time PCR LAMP RT-PCR

VIRUS ISOLATION Mice Cell cultures



ELISA DETECTION OF RVF ANTIGEN (NUCLEOCAPSID PROTEIN)

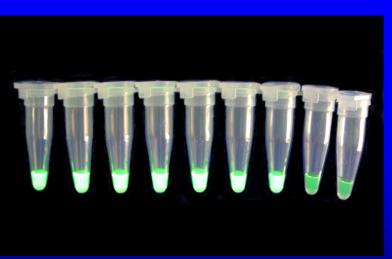
ELISA DETECTION OF ANTIGENEMIA



LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP)

AMPLIFIES TARGET NUCLEIC ACID UNDER ISOTHERMAL CONDITIONS (60 - 65°C) USING SIMPLE EQUIPMENT: HEATING BLOCK OR WATER BATH (NOT THERMPCYCLER)

BASED ON AUTOCYCLING STRAND DISPLACEMENT DNA SYNTHESIS BY Bst DNA POLYMERASES AND 4-6 PRIMERS

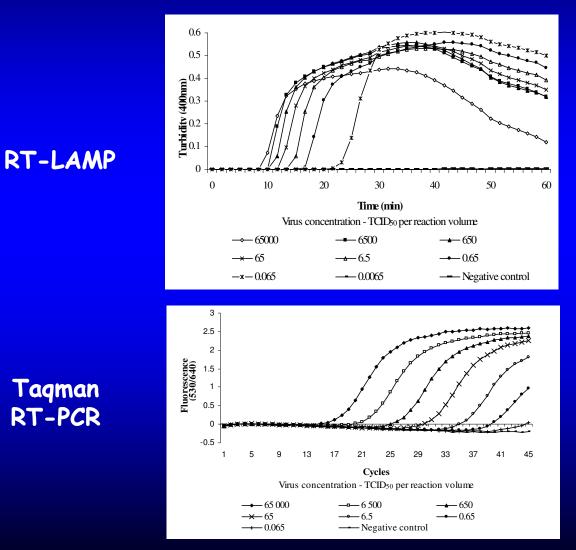


Courtesy of Prof Morita, University of Nagasaki, Japan

LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP)

Products visible by naked eye, fluorescence, agarose gel electrophoresis, or turbidity

1 2 3 4 5 6 7 8 9


LAMP turbidimeter connected to laptop for real-time monitoring

Courtesy of Prof Morita, University of Nagasaki, Japan

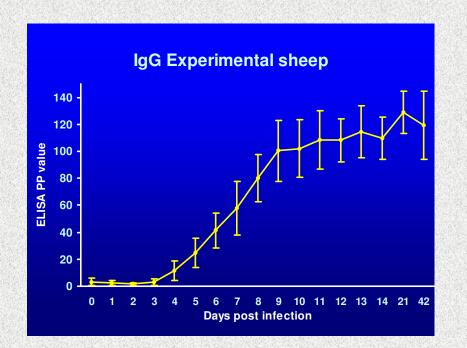
RT-LAMP ASSAY & Taqman RTD-PCR EQUALLY SENSITIVE: DETECTION LIMIT 0.065 TCID50/REACTION VOLUME

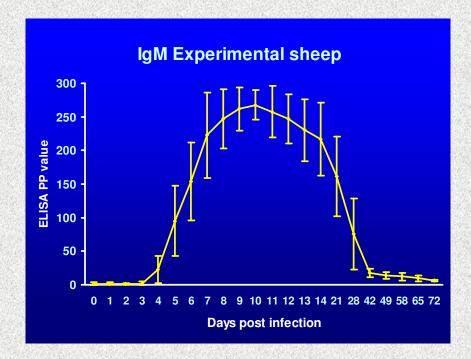
COMPARISON OF RT-LAMP, Taqman-PCR & VIRUS ISOLATION FOR DETECTION OF RVFV IN CLINICAL SPECIMENS

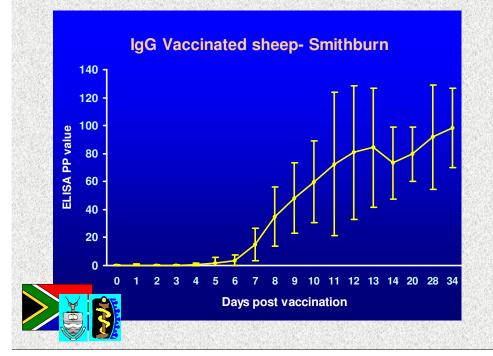
Specimen	Source	Number tested	Results	Results	Results	Results
			RT-LAMP + RTD-PCR + Isolation +	RT-LAMP - RTD-PCR - Isolation -	RT-LAMP + RTD-PCR + Isolation -	RT-LAMP - RTD-PCR - Isolation +
Serum	Sheep	20	10	10	0	0
Plasma	Sheep	6	6	0	0	0
Serum	Human	65	31	32	1	1
Liver	Buffalo	3	3	0	0	0
Kidney	Buffalo	3	3	0	0	0
Total		97	53	42	1	1

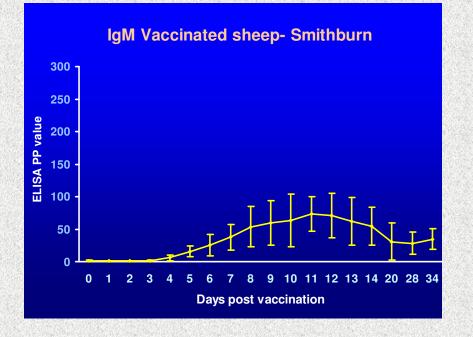
ELISA ANTIBODY TESTS

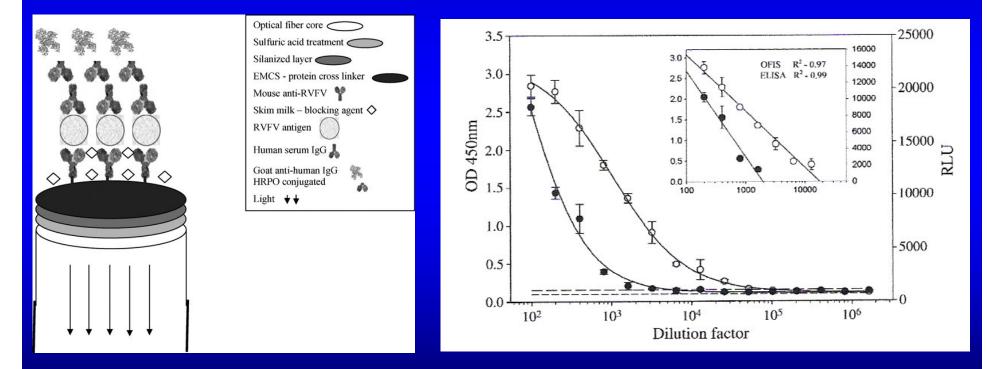
1. INACTIVATED MOUSE LIVER ANTIGEN, ANTI-SPP CONJUGATES:


HUMAN Sandwich ELISA: anti-RVFV IgG in humans Capture ELISA: anti-RVFV IgM in humans

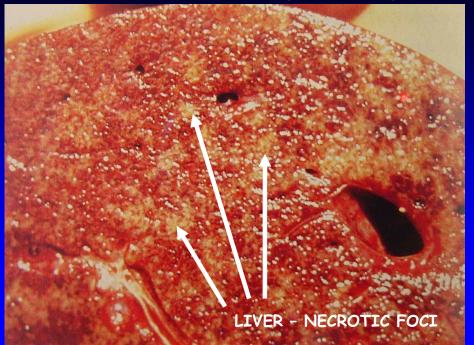

LIVESTOCK Sandwich ELISA: anti-RVFV IgG in cattle Sandwich ELISA: anti-RVFV IgG in sheep and goats Capture ELISA: anti-RVFV IgM in sheep, goats and cattle


2. RECOMBINANT ANTIGEN, ANTI-PROTEIN G CONJUGATE: Recomb NP indirect ELISA: anti-RVFV IgG in sheep, goats and cattle Recomb NP indirect ELISA: anti-RVFV IgG in wild ruminants Recomb NP indirect ELISA: anti-RVFV IgG antibody in humans


3. CELL-LYSATE ANTIGEN, DETECTION: RABBIT ANTI-RVF & CONJUGATE: Inhibition ELISA: anti-RVFV in humans, domestic & wild animals

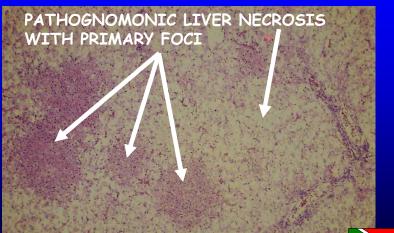


OPTICAL FIBER IMMUNSENSOR (OFIS) = biosensor with detection by chemiluminescence (Sorbazo et al 2007)


Human anti-RVF IgG - more sensitive and quicker than ELISA



Aim: development of 'BIOPEN' for detection of viral antigens and antibodies



LESIONS IN LIVESTOCK (COETZER)

HAEMORRHAGE INTO ABOMASUM/ INTESTINES

PREVENTION/CONTROL IN LIVESTOCK

- ROUTINE VACCINATION ESPECIALLY EXOTIC
 BREEDS WEANERS
- RAINFALL RSSD PREDICTIONS TO DRIVE COST-EFFECTIVE VACCINATION STRATEGIES???
- SMITHBURN MLVV LIFELONG IMMUNITY BUT ONLY PARTIALLY ATTENUATED - SOME ABORTIONS -THEREFORE VACCINATE WEANERS - ANNUALLY
- INACTIVATED VACCINE EXPENSIVE AND REQUIRES 2 DOSES - PLUS BOOSTERS
- NEED FOR SAFE AND POTENT NEW VACCINES -HUMAN AND VETERINARY!

